分析 根據(jù)題意,求出二次函數(shù)f(x)的解析式,用a表示系數(shù)且a≠0;
(1)當函數(shù)y=f(x)+3a有零點時,△≥0,由此求出a的取值范圍;
(2)討論a=1和a≠1時,函數(shù)y=f(x)-(x2-ax+m)是否有零點,并求出對應(yīng)函數(shù)的零點.
解答 解:二次函數(shù)f(x)=ax2+bx+c,(a≠0),
不等式f(x)-2x<0可化為ax2+(b-2)x+c<0,
且解集為(-1,2),
所以對應(yīng)方程ax2+(b-2)x+c=0的兩個實數(shù)根為-1和2,
即$\left\{\begin{array}{l}{-1+2=-\frac{b-2}{a}}\\{-1×2=\frac{c}{a}}\end{array}\right.$,
解得c=-2a,b=2-a,
所以f(x)=ax2+(2-a)x-2a;
(1)當函數(shù)y=f(x)+3a=ax2+(2-a)x+a有零點時,
△=(2-a)2-4a2≥0,
即3a2+4a-4≤0,
解得-2≤a≤$\frac{2}{3}$;
又a≠0,
所以a的取值范圍是[-2,0)∪(0,$\frac{2}{3}$];
(2)函數(shù)y=f(x)-(x2-ax+m)
=ax2+(2-a)x-2a-(x2-ax+m)
=(a-1)x2+2x-(2a+m),
當a=1時,f(x)=2x-(2+m)=0,存在零點是x=$\frac{m}{2}$+1;
當a≠1時,△=4+4(a-1)(2a+m)≥0,即2a2+a(m-2)-m+1≥0,
又m>1,所以a<$\frac{-(m-2)-\sqrt{{m}^{2}+4m-4}}{4}$或a>$\frac{-(m-2)+\sqrt{{m}^{2}+4m-4}}{4}$且a≠1時,函數(shù)存在零點,
且零點為x=$\frac{-2±\sqrt{{2a}^{2}+a(m-2)-m+1}}{2(a-1)}$.
點評 本題考查了二次函數(shù)的性質(zhì)與應(yīng)用問題,也考查了函數(shù)的零點與方程的解的應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 函數(shù)f(x)是周期函數(shù),且最小正周期是2 | |
B. | 函數(shù)f(x)的圖象關(guān)于點(1,0)中心對稱 | |
C. | 函數(shù)f(x)在區(qū)間(0,1)上是增函數(shù) | |
D. | 函數(shù)f(x)的零點是x=2k(其中k∈Z) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ±$\frac{\sqrt{7}}{3}$ | B. | $±\frac{3}{4}$ | C. | ±$\frac{\sqrt{7}}{4}$ | D. | $±\frac{4}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com