精英家教網 > 高中數學 > 題目詳情
11.若函數f(x)=$\left\{{\begin{array}{l}{1-{x^2},x<0}\\{-{x^2}-x-1,x>0}\end{array}}$,則f(f(2))的值為( 。
A.50B.-7C.-48D.-49

分析 先求出f(2)=-7,從而f(f(2))=f(-7),由此能求出結果.

解答 解:∵函數f(x)=$\left\{{\begin{array}{l}{1-{x^2},x<0}\\{-{x^2}-x-1,x>0}\end{array}}$,
∴f(2)=-4-2-1=-7,
f(f(2))=f(-7)=1-(-7)2=-48.
故選:C.

點評 本題考查函數值的求法,是基礎題,解題時要認真審題,注意函數性質的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

1.近年來,某地區(qū)為促進本地區(qū)發(fā)展,通過不斷整合地區(qū)資源、優(yōu)化投資環(huán)境、提供投資政策扶持等措施,吸引外來投資,效果明顯.該地區(qū)引進外來資金情況如表:
年份20122013201420152016
時間代號t12345
外來資金y(百億元)567810
(Ⅰ)求y關于t的回歸直線方程$\widehat{y}$=$\widehat$t+$\widehat{a}$;
(Ⅱ)根據所求回歸直線方程預測該地區(qū)2017年(t=6)引進外來資金情況.
參考公式:回歸方程$\widehat{y}$=$\widehat$t+$\widehat{a}$中斜率和截距的最小二乘估計公式分別為:
$\widehat$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$t.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.某中學為了了解全校學生的上網情況,在全校采用隨機抽樣的方法抽取了40名學生(其中男女生人數恰好各占一半)進行問卷調查,并進行了統(tǒng)計,按男女分為兩組,再將每組學生的月上網次數分為5組:[0,5),[5,10),[10,15),[15,20),[20,25],得到如圖所示的頻率分布直方圖:
(Ⅰ)寫出a的值;
(Ⅱ)求在抽取的40名學生中月上網次數不少于15次的學生人數;
(Ⅲ)在抽取的40名學生中,從月上網次數不少于20次的學生中隨機抽取2人,求至少抽到1名女生的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.設銳角△ABC的三個內角A,B,C的對邊分別為a,b,c成等比數列,且sinAsinC=$\frac{3}{4}$,則角B=( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.設函數f(x)=sin2x+a(1+cosx)-2x在x=$\frac{5π}{6}$處取得極值.
(1)若f(x)的導函數為f'(x),求f'(x)的最值;
(2)當x∈[0,π]時,求f(x)的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.若函數f(x)=$\sqrt{({m-1}){x^2}-({1-m})x+1}$的定義域是R,則實數m的取值范圍是[1,5].

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知等差數列{an}的前n項和為Sn,a2=0,S5=2a4-1.
(1)求數列{an}的通項公式;
(2)設bn=2${\;}^{{a}_{n}}$,求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.已知點 A(1,3),B(3,1),C(-1,0),則△ABC的面積為( 。
A.5B.$5\sqrt{2}$C.10D.$10\sqrt{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知圓O:x2+y2=4和圓C:x2+(y-4)2=1.
(1)判斷圓O和圓C的位置關系;
(2)過圓C的圓心C作圓O的切線l,求切線l的方程;(結果必須寫成一般式).

查看答案和解析>>

同步練習冊答案