14.將函數(shù)f(x)=$\sqrt{3}$sinxcosx+sin2x的圖象上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,再沿x軸向右平移$\frac{π}{6}$個(gè)單位,得到函數(shù)y=g(x)的圖象,則y=g(x)的一個(gè)遞增區(qū)間是( 。
A.$[{-\frac{π}{6},\frac{5π}{6}}]$B.$[{-\frac{π}{2},\frac{π}{2}}]$C.$[{-\frac{π}{12},\frac{4π}{3}}]$D.$[{-\frac{π}{4},0}]$

分析 利用三角恒等變換化簡(jiǎn)函數(shù)的解析式為 f(x)=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$,由函數(shù)y=Asin(ωx+φ)的圖象變換可求函數(shù)g(x),令x-$\frac{π}{3}$∈[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈Z即可得解.

解答 解:f(x)=$\sqrt{3}$sinxcosx+sin2x=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x+$\frac{1}{2}$=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$,
圖象上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,可得對(duì)應(yīng)的函數(shù)解析式為y=sin(x-$\frac{π}{6}$)+$\frac{1}{2}$,
再沿x軸向右平移$\frac{π}{6}$個(gè)單位,得到函數(shù)解析式為y=g(x)=sin(x-$\frac{π}{6}$-$\frac{π}{6}$)+$\frac{1}{2}$=sin(x-$\frac{π}{3}$)+$\frac{1}{2}$,
令x-$\frac{π}{3}$∈[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈Z,解得:x∈[-$\frac{π}{6}$+2kπ,kπ+$\frac{5π}{6}$],k∈Z,
取k=0,可得:x∈[-$\frac{π}{6}$,$\frac{5π}{6}$].
故選:A.

點(diǎn)評(píng) 本題主要考查三角函數(shù)的恒等變換及化簡(jiǎn)求值,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知拋物線y2=4x,直線l過定點(diǎn)P(2,1),斜率為k,當(dāng)k為何值時(shí),直線l與拋物線:只有一個(gè)公共點(diǎn);有兩個(gè)公共點(diǎn);沒有公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知tan($\frac{π}{4}$+α)=2,則sin2α=(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=2{cos^2}(x-\frac{π}{4})-\sqrt{3}$cos2x+1,
(1)求函數(shù)f(x)的最小正周期及對(duì)稱軸方程;
(2)若對(duì)任意實(shí)數(shù)x,不等式|f(x)-m|<2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.下列各數(shù)85(9)、1000(4)、111111(2)中最小的數(shù)是111111(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知a,b,c分別是△ABC的內(nèi)角A,B,C的對(duì)邊,BC邊上的高為$\frac{a}{2}$,則$\frac{c}$的最大值為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.命題“若x>2,則x>1”的逆否命題是(  )
A.若x<2,則x<1B.若x≤2,則x≤1C.若x≤1,則x≤2D.若x<1,則x<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為e=$\frac{{\sqrt{2}}}{2}$,過焦點(diǎn)且垂直于x軸的直線被橢圓E截得的線段長(zhǎng)為$\sqrt{2}$.
(1)求橢圓E的方程;
(2)斜率為k的直線l經(jīng)過原點(diǎn)O,與橢圓E相交于不同的兩點(diǎn)M,N,判斷并說明在橢圓E上是否存在點(diǎn)P,使得△PMN的面積為$\frac{{2\sqrt{2}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知φ∈(0,π),若函數(shù)f(x)=cos(2x+φ)為奇函數(shù),則φ=$\frac{π}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案