【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (其中為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系并取相同的單位長(zhǎng)度,曲線的極坐標(biāo)方程為.
(1)把曲線的方程化為普通方程, 的方程化為直角坐標(biāo)方程;
(2)若曲線, 相交于兩點(diǎn), 的中點(diǎn)為,過點(diǎn)做曲線的垂線交曲線于兩點(diǎn),求.
【答案】(1), (2)16
【解析】試題分析:(1)先根據(jù)代入消元法將曲線的參數(shù)方程化為普通方程,利用 將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)先聯(lián)立與方程,根據(jù)韋達(dá)定理以及中點(diǎn)坐標(biāo)公式求,設(shè)直線EF參數(shù)方程,與方程聯(lián)立,利用韋達(dá)定理以及參數(shù)幾何意義得.
試題解析:(1)曲線的參數(shù)方程為(其中為參數(shù)),消去參數(shù)可得.
曲線的極坐標(biāo)方程為,展開為,化為..
(2)設(shè),且中點(diǎn)為,
聯(lián)立,
解得,
∴.
∴.
線段的中垂線的參數(shù)方程為
(為參數(shù)),
代入,可得,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(sinθ,1), =(1,cosθ),﹣ <θ . (Ⅰ)若 ⊥ ,求tanθ的值.
(Ⅱ)求| + |的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊長(zhǎng)分別是a,b,c.滿足2acosC+ccosA=b.
(Ⅰ)求角C的大。
(Ⅱ)求sinAcosB+sinB的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)請(qǐng)?jiān)谥苯亲鴺?biāo)系中畫出函數(shù)f(x)的圖象,并寫出該函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=f(x)﹣m恰有3個(gè)不同零點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空間四邊形ABCD中,AD=BC=2,E,F(xiàn)分別是AB,CD的中點(diǎn),EF= ,則異面直線AD,BC所成的角的補(bǔ)角為( )
A.120°
B.60°
C.90°
D.30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)其中實(shí)數(shù)為常數(shù)且.
(I)求函數(shù)的單調(diào)區(qū)間;
(II)若函數(shù)既有極大值,又有極小值,求實(shí)數(shù)的取值范圍及所有極值之和;
(III)在(II)的條件下,記分別為函數(shù)的極大值點(diǎn)和極小值點(diǎn),
求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是各項(xiàng)都為正數(shù)的等比數(shù)列,{bn}是等差數(shù)列,且a1=b1=1,a3+b5=13,a5+b3=21.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 求數(shù)列{Snbn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司租地建倉(cāng)庫(kù),每月土地占用費(fèi)y1與車庫(kù)到車站的距離x成反比,而每月的庫(kù)存貨物的運(yùn)費(fèi)y2與車庫(kù)到車站的距離x成正比.如果在距離車站10公里處建立倉(cāng)庫(kù),這兩項(xiàng)費(fèi)用y1和y2分別為2萬(wàn)元和8萬(wàn)元.求若要使得這兩項(xiàng)費(fèi)用之和最小時(shí),倉(cāng)庫(kù)應(yīng)建在距離車站多遠(yuǎn)處?此時(shí)最少費(fèi)用為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)點(diǎn) (1,0),直線: ,點(diǎn)在直線上移動(dòng), 是線段與軸的交點(diǎn), 異于點(diǎn)R的點(diǎn)Q滿足: , .
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2) 記的軌跡的方程為,過點(diǎn)作兩條互相垂直的曲線
的弦. ,設(shè). 的中點(diǎn)分別為.
問直線是否經(jīng)過某個(gè)定點(diǎn)?如果是,求出該定點(diǎn),
如果不是,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com