10.函數(shù)y=Asin(ωx+φ)(A>0,ω>0,0<φ<2π)一個周期的圖象如圖所示,則(  )
A.A=2,ω=2,φ=$\frac{3π}{4}$B.A=2,ω=2,φ=$\frac{5π}{4}$C.A=2,ω=$\frac{1}{2}$,φ=$\frac{3π}{4}$D.A=2,ω=$\frac{1}{2}$,φ=$\frac{5π}{4}$

分析 由函數(shù)的最值求出A,由周期求出ω,由五點法作圖求出φ的值,可得結論.

解答 解:由函數(shù)y=Asin(ωx+φ)(A>0,ω>0,0<φ<2π)一個周期的圖象,
可得A=2,$\frac{2π}{ω}$=$\frac{7π}{2}$+$\frac{π}{2}$,∴ω=$\frac{1}{2}$.
再根據(jù)五點法作圖可得$\frac{1}{2}$•$\frac{3π}{2}$+φ=2π,∴φ=$\frac{5π}{4}$,
故選:D.

點評 本題主要考查利用y=Asin(ωx+φ)的圖象特征,由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的最值求出A,由周期求出ω,由五點法作圖求出φ的值,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.在△ABC中,角A、B、C所對的邊分別為a、b、c,且滿足ccos(2016π-A)-$\sqrt{3}$ccos($\frac{3π}{2}$-A)=a+b.
(I)求角C的大。
(Ⅱ)若c=4,△ABC的面積為4$\sqrt{3}$,試求向量$\overrightarrow{AB}$在$\overrightarrow{BC}$方向上的投影.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.過雙曲線C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的右焦點F的直線l與雙曲線C交于M,N兩點,A為雙曲線的左焦點,若直線AM與直線AN的斜率k1,k2滿足k1+k2=2,則直線l的方程是( 。
A.y=2(x-3)B.y=-2(x-3)C.y=$\frac{1}{2}$(x-3)D.y=-$\frac{1}{2}$(x-3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖1,在等腰梯形ABCD中,BC∥AD,BC=$\frac{1}{2}$AD=2,∠A=60°,E為AD中點,點O,F(xiàn)分別為BE,DE的中點.將△ABE沿BE折起到△A1BE的位置,使得平面A1BE⊥平面BCDE(如圖2).
(Ⅰ)求證:A1O⊥CE;
(Ⅱ)求直線A1B與平面A1CE所成角的正弦值;
(Ⅲ)側棱A1C上是否存在點P,使得BP∥平面A1OF?若存在,求出$\frac{{{A_1}P}}{{{A_1}C}}$的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知f(x)=|x-2|-|x-a|.
(Ⅰ)當a=-5時,解不等式f(x)<1;
(Ⅱ)若f(x)≤-|${x-\frac{1}{4}}$|的解集包含[1,2],求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.如圖是函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|≤$\frac{π}{2}}$)圖象的一部分,為了得到這個函數(shù)的圖象,只要將y=sinx的圖象上所有的點( 。
A.向左平移$\frac{π}{8}$個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
B.向右平移$\frac{π}{8}$個單位長度,再把所得各點的橫坐標縮短到原來的$\frac{1}{2}$,縱坐標不變
C.向左平移$\frac{π}{4}$個單位長度,再把所得各點的橫坐標縮短到原來的$\frac{1}{2}$,縱坐標不變
D.向右平移$\frac{π}{4}$個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=m-\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(其中t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為ρ=2
(1)若直線l與曲線C有且只有一個公共點,求m的值;
(2)若點P(m,0),直線l與曲線C交于相異兩點A,B,求|PA|•|PB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.對于給定的正整數(shù)n,若等差數(shù)列a1,a2,a3,…滿足a12+a2n+12≤10,則S=a2n+1+a2n+2+a2n+3+…+a4n+1的最大值為10n+5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,平面ABCD⊥平面ABEF,四邊形ABCD是矩形,四邊形ABEF是等腰梯形,其中AB∥EF,AB=2AF,∠BAF=60°,O,P分別為AB,CB的中點,M為△OBF的重心.
(I)求證:平面ADF⊥平面CBF;
(II)求證:PM∥平面AFC.

查看答案和解析>>

同步練習冊答案