19.對于給定的正整數(shù)n,若等差數(shù)列a1,a2,a3,…滿足a12+a2n+12≤10,則S=a2n+1+a2n+2+a2n+3+…+a4n+1的最大值為10n+5.

分析 根據(jù)等差數(shù)列的關(guān)系整理得S=(2n+1)a3n+1,由a12+a2n+12≤10得到關(guān)于d的二次方程,10n2d2-8da3n+1+2a3n+12-10≤0有解,根據(jù)判別式即可求出.

解答 解:因?yàn)閿?shù)列a2n+1+a4n+1=a2n+2+a4n=…=2a3n+1是等差數(shù)列,
所以a12+a2n+12=(a3n+1-3nd)2+(a3n+1-nd)2≤10,
化簡得:2a3n+12-8da3n+1+10n2d2-10≤0,
關(guān)于d的二次方程,10n2d2-8da3n+1+2a3n+12-10≤0,有解,
所以△=64a3n+12-4×10n2(2a3n+12-10)≥0,
所以(64-80n2)a3n+12≥-400n2,
所以a3n+12≤$\frac{400{n}^{2}}{80{n}^{2}-64}$=10($\frac{1}{2}$+$\frac{2}{5{n}^{2}-4}$)≤25,
所以-5≤a3n+1≤5,
即Sn≤5(2n+1)=10n+5,
故答案為:10n+5.

點(diǎn)評 本題考查求等差數(shù)列的和,利用判別式判斷二次函數(shù)的最大值,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知P(x,1)是拋物線x2=2py(p>0)上一點(diǎn),若P到焦點(diǎn)的距離為3,則p的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=Asin(ωx+φ)(A>0,ω>0,0<φ<2π)一個周期的圖象如圖所示,則( 。
A.A=2,ω=2,φ=$\frac{3π}{4}$B.A=2,ω=2,φ=$\frac{5π}{4}$C.A=2,ω=$\frac{1}{2}$,φ=$\frac{3π}{4}$D.A=2,ω=$\frac{1}{2}$,φ=$\frac{5π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知x,y滿足約束條件$\left\{\begin{array}{l}x-y+5≥0\\ x≤2\\ x+y≥0\end{array}\right.$,則z=x+2y的最小值為( 。
A.-3B.$-\frac{5}{2}$C.-2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在Rt△ABC中,∠A=90°,AB=2,AC=4,E,F(xiàn)分別為AB,BC的中點(diǎn),則$\overrightarrow{CE}•\overrightarrow{AF}$=( 。
A.9B.-9C.7D.-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的首項(xiàng)a1=5,且an+1=2an+1(n∈N*).
(Ⅰ)證明:數(shù)列{an+1}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{nan}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.從某班抽取5名學(xué)生測量身高(單位:cm),得到的數(shù)據(jù)為160,162,159,160,159,則該組數(shù)據(jù)的方差s2=$\frac{6}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某省高中男生身高統(tǒng)計調(diào)查數(shù)據(jù)顯示:全省100000名男生的身高服從正態(tài)分布N(170.5,16).現(xiàn)從某學(xué)校高三年級男生中隨機(jī)抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于157.5cm和187.5cm之間,將測量結(jié)果按如下方式分成6組:第1組[157.5,162.5),第2組[162.5,167.5),…,第6組[182.5,187.5],如圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)試評估該校高三年級男生的平均身高;
(Ⅱ)求這50名男生身高在177.5cm以上(含177.5cm)的人數(shù);
(Ⅲ)在這50名男生身高在177.5cm以上(含177.5cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全省前130名的人數(shù)記為ξ,求ξ的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):若ξ~N(μ,σ2),則P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-2σ<ξ≤μ+2σ)=0.9544,P(μ-3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)集合P={1,2,…,6},A,B是P的兩個非空子集.則所有滿足A中的最大數(shù)小于B中的最小數(shù)的集合對(A,B)的個數(shù)為:129.

查看答案和解析>>

同步練習(xí)冊答案