在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB= 60°,F(xiàn)C⊥平面ABCD,AE⊥BD,CB= CD= CF.

(1)求證:BD⊥平面AED;

(2)求二面角F—BD—C的正切值.

 

 

(1)詳見(jiàn)解析;(2)2.

【解析】

試題分析:(1)要證明直線和平面垂直,只需證明直線和平面內(nèi)的兩條相交直線垂直.由已知得,故只需證明,在中,由余弦定理得的關(guān)系,即的關(guān)系確定,在中,結(jié)合已知條件可判定是直角三角形,且,從而可證明BD⊥平面AED;(2)求二面角,可先找后求,過(guò),由已知FC⊥平面ABCD,得,故,,故為二面角F—BD—C的平面角,在中計(jì)算

(1)在等腰梯形ABCD中,AB∥CD,∠DAB= 60°,,由余弦定理可知,

,即,在中,,,則是直角三角形,且,又,且,故BD⊥平面AED.

(2)過(guò),交于點(diǎn),因?yàn)镕C⊥平面ABCD,,所以,所以

,因此,,故為二面角F—BD—C的平面角.

中,,可得

因此. 即二面角F—BD—C的正切值為2.

考點(diǎn):1、直線和平面垂直的判定;2、二面角.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省張掖市高三第三次診斷考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

函數(shù)f(x)=sin xcos x+cos 2x的最小正周期和振幅分別是( ) .

A.π,1 B.π,2 C.2π,1 D.2π,2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南省高三十三校第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

向等腰直角三角形ABC(其中AC=BC)內(nèi)任意投一點(diǎn)M,則AM小于AC的概率為( )

A.   B.   C.    D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南省長(zhǎng)沙市高考二模理科數(shù)學(xué)試卷(解析版) 題型:選擇題

若兩條異面直線所成的角為,則稱(chēng)這對(duì)異面直線為“黃金異面直線對(duì)”,在連接正方體各頂點(diǎn)的所有直線中,“黃金異面直線對(duì)”共有( )

A.12對(duì) B.18對(duì) C.24 對(duì) D.30對(duì)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南省長(zhǎng)沙市高考二模理科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)隨機(jī)變量X~N(2,32),若P(X≤c)=P(X>c),則c等于( )

A.0 B.1 C.2 D.3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南省長(zhǎng)沙市高考二模文科數(shù)學(xué)試卷(解析版) 題型:填空題

若x,y滿足約束條件,則的最大值為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南省長(zhǎng)沙市高考二模文科數(shù)學(xué)試卷(解析版) 題型:選擇題

某程序框圖如圖所示,則該程序運(yùn)行后輸出的值是(   。

A. B. C. D.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南省益陽(yáng)市高三模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

在直角坐標(biāo)系中,曲線的參數(shù)方程為(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,曲線的極坐標(biāo)方程為,則的兩個(gè)交點(diǎn)之間的距離等于.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南省懷化市高三第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

,則的最大值為_(kāi)_____.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案