【題目】某大學(xué)開學(xué)期間,該大學(xué)附近一家快餐店招聘外賣騎手,該快餐店提供了兩種日工資結(jié)算方案:方案規(guī)定每日底薪100元,外賣業(yè)務(wù)每完成一單提成2元;方案規(guī)定每日底薪150元,外賣業(yè)務(wù)的前54單沒有提成,從第55單開始,每完成一單提成5.該快餐店記錄了每天騎手的人均業(yè)務(wù)量,現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為七組,整理得到如圖所示的頻率分布直方圖.

1)隨機(jī)選取一天,估計(jì)這一天該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單的概率;

2)從以往統(tǒng)計(jì)數(shù)據(jù)看,新聘騎手選擇日工資方案的概率為,選擇方案的概率為.若甲、乙、丙、丁四名騎手分別到該快餐店應(yīng)聘,四人選擇日工資方案相互獨(dú)立,求至少有兩名騎手選擇方案的概率,

3)若僅從人日均收入的角度考慮,請你為新聘騎手做出日工資方案的選擇,并說明理由.(同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)

【答案】10.4;(2;(3)應(yīng)選擇方案,理由見解析

【解析】

1)根據(jù)頻率分布直方圖,可求得該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單的頻率,即可估算其概率;

2)根據(jù)獨(dú)立重復(fù)試驗(yàn)概率求法,先求得四人中有0人、1人選擇方案的概率,再由對立事件概率性質(zhì)即可求得至少有兩名騎手選擇方案的概率;

3)設(shè)騎手每日完成外賣業(yè)務(wù)量為件,分別表示出方案的日工資和方案的日工資函數(shù)解析式,即可計(jì)算兩種計(jì)算方式下的數(shù)學(xué)期望,并根據(jù)數(shù)學(xué)期望作出選擇.

1)設(shè)事件隨機(jī)選取一天,這一天該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65”.

根據(jù)頻率分布直方圖可知快餐店的人均日外賣業(yè)務(wù)量不少于65單的頻率分別為,

,

估計(jì)為0.4.

2)設(shè)事件甲、乙、丙、丁四名騎手中至少有兩名騎手選擇方案,

設(shè)事件,為甲、乙、丙、丁四名騎手中恰有人選擇方案,

,

所以四名騎手中至少有兩名騎手選擇方案的概率為.

3)設(shè)騎手每日完成外賣業(yè)務(wù)量為件,

方案的日工資,

方案的日工資

所以隨機(jī)變量的分布列為

160

180

200

220

240

260

280

0.05

0.05

0.2

0.3

0.2

0.15

0.05

;

同理,隨機(jī)變量的分布列為

150

180

230

280

330

0.3

0.3

0.2

0.15

0.05

.

,

∴建議騎手應(yīng)選擇方案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車又稱為小黃車,近年來逐漸走進(jìn)了人們的生活,也成為減少空氣污染,緩解城市交通壓力的一種重要手段.為調(diào)查某地區(qū)居民對共享單車的使用情況,從該地區(qū)居民中按年齡用隨機(jī)抽樣的方式隨機(jī)抽取了人進(jìn)行問卷調(diào)查,得到這人對共享單車的評價(jià)得分統(tǒng)計(jì)填入莖葉圖,如下所示(滿分分):

1)找出居民問卷得分的眾數(shù)和中位數(shù);

2)請計(jì)算這位居民問卷的平均得分;

3)若在成績?yōu)?/span>分的居民中隨機(jī)抽取人,求恰有人成績超過分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右頂點(diǎn)為,離心率為,點(diǎn)在橢圓上,點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對稱.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)求經(jīng)過點(diǎn),且和軸相切的圓的方程;

3)若是橢圓上異于,的兩個(gè)點(diǎn),且,點(diǎn)在直線的上方,試判斷的平分線是否經(jīng)過軸上的一個(gè)定點(diǎn)?若是,求出該定點(diǎn)坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量.

1)求f(x)的單調(diào)遞增區(qū)間;

2)在△ABC中,角A,B,C的對邊分別為a,b,c,且,若f(A)=1,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】嫦娥四號月球探測器于2018128日搭載長征三號乙運(yùn)載火箭在西昌衛(wèi)星發(fā)射中心發(fā)射.12日下午4點(diǎn)43分左右,嫦娥四號順利進(jìn)入了以月球球心為一個(gè)焦點(diǎn)的橢圓形軌道,如圖中③所示,其近月點(diǎn)與月球表面距離為100公里,遠(yuǎn)月點(diǎn)與月球表面距離為400公里,已知月球的直徑約為3476公里,對該橢圓有下述四個(gè)結(jié)論:

1)焦距長約為300公里;

2)長軸長約為3988公里;

3)兩焦點(diǎn)坐標(biāo)約為

4)離心率約為

其中正確結(jié)論的個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,分別為橢圓的左右焦點(diǎn),點(diǎn)在橢圓上,的周長為6.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過點(diǎn)的直線與橢圓交于,兩點(diǎn)設(shè)為坐標(biāo)原點(diǎn),是否存在常數(shù)使得恒成立?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

1)討論函數(shù)上的單調(diào)性;

2)若,當(dāng)時(shí),,且有唯一零點(diǎn),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面是菱形的四棱錐中,ECD中點(diǎn),,,已知.

1)證明:;

2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)面是菱形,,是棱的中點(diǎn),,在線段上,且.

(1)證明:;

(2)若,面,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案