【題目】設(shè)集合 ,如果存在的子集,,同時(shí)滿足如下三個(gè)條件:
①;
②,,兩兩交集為空集;
③,則稱集合具有性質(zhì).
(Ⅰ) 已知集合,請(qǐng)判斷集合是否具有性質(zhì),并說明理由;
(Ⅱ)設(shè)集合,求證:具有性質(zhì)的集合有無窮多個(gè).
【答案】(Ⅰ)不具有,理由見解析;(Ⅱ)證明見解析
【解析】
(Ⅰ)由條件易得集合具有性質(zhì),對(duì)集合中的進(jìn)行討論,利用題設(shè)條件得出集合不具有性質(zhì);
(Ⅱ)利用反證法,假設(shè)具有性質(zhì)的集合有限個(gè),根據(jù)題設(shè)條件得出矛盾,即可證明具有性質(zhì)的集合有無窮多個(gè).
解:(Ⅰ)具有性質(zhì),如可取;
不具有性質(zhì);理由如下:
對(duì)于中的元素,或者
如果,那么剩下個(gè)元素,不滿足條件;
如果,那么剩下個(gè)元素,也不滿足條件.
因此,集合不具有性質(zhì).
(Ⅱ)證明:假設(shè)符合條件的只有有限個(gè),設(shè)其中元素個(gè)數(shù)最多的為.
對(duì)于,由題設(shè)可知,存在,滿足條件. 構(gòu)造如下集合
由于
所以
易驗(yàn)證,,對(duì)集合滿足條件,而
也就是說存在比的元素個(gè)數(shù)更多的集合具有性質(zhì),與假設(shè)矛盾.
因此具有性質(zhì)的集合有無窮多個(gè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2014年7月18日15時(shí),超強(qiáng)臺(tái)風(fēng)“威馬遜”登陸海南省.據(jù)統(tǒng)計(jì),本次臺(tái)風(fēng)造成全省直接經(jīng)濟(jì)損失119.52億元,適逢暑假,小明調(diào)查住在自己小區(qū)的50戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,作出如下頻率分布直方圖:
經(jīng)濟(jì)損失4000元以下 | 經(jīng)濟(jì)損失4000元以上 | 合計(jì) | |
捐款超過500元 | 30 | ||
捐款低于500元 | 6 | ||
合計(jì) |
(1)臺(tái)風(fēng)后區(qū)委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如上表,在表格空白處填寫正確數(shù)字,并說明是否有以上的把握認(rèn)為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
(2)臺(tái)風(fēng)造成了小區(qū)多戶居民門窗損壞,若小區(qū)所有居民的門窗均由李師傅和張師傅兩人進(jìn)行維修,李師傅每天早上在7:00到8:00之間的任意時(shí)刻來到小區(qū),張師傅每天早上在7:30到8:30分之間的任意時(shí)刻來到小區(qū),求連續(xù)3天內(nèi),李師傅比張師傅早到小區(qū)的天數(shù)的分布列和數(shù)學(xué)期望.
附:臨界值表
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)盒子中有5只同型號(hào)的燈泡,其中有3只一等品,2只二等品,現(xiàn)在從中依次取出2只,設(shè)每只燈泡被取到的可能性都相同,請(qǐng)用“列舉法”解答下列問題:
(Ⅰ)求第一次取到二等品,且第二次取到的是一等品的概率;
(Ⅱ)求至少有一次取到二等品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的左、右焦點(diǎn)分別為、,離心率為,過焦點(diǎn)且垂直于x軸的直線被橢圓C截得的線段長為1.
Ⅰ求橢圓C的方程;
Ⅱ點(diǎn)為橢圓C上一動(dòng)點(diǎn),連接,,設(shè)的角平分線PM交橢圓C的長軸于點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心為,為圓上任意一點(diǎn),,線段的垂直平分線交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)記點(diǎn)的軌跡為曲線,點(diǎn),.若點(diǎn)為直線上一動(dòng)點(diǎn),且不在軸上,直線、分別交曲線于、兩點(diǎn),求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率等于,它的一個(gè)頂點(diǎn)恰好在拋物線的準(zhǔn)線上.
求橢圓的標(biāo)準(zhǔn)方程;
點(diǎn),在橢圓上,是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn)當(dāng)運(yùn)動(dòng)時(shí),滿足,試問直線的斜率是否為定值,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,拋物線的焦點(diǎn)是,是拋物線上的點(diǎn),H為直線上任一點(diǎn),A,B分別為橢圓C的上下頂點(diǎn),且A,B,H三點(diǎn)的連線可以構(gòu)成三角形.
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線HA,HB與橢圓C的另一交點(diǎn)分別為點(diǎn)D,E,求證:直線DE過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓經(jīng)過點(diǎn),左、右焦點(diǎn)分別是,,點(diǎn)在橢圓上,且滿足的點(diǎn)只有兩個(gè).
(Ⅰ)求橢圓的方程;
(Ⅱ)過且不垂直于坐標(biāo)軸的直線交橢圓于,兩點(diǎn),在軸上是否存在一點(diǎn),使得的角平分線是軸?若存在求出,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,橢圓離心率為,、是橢圓C的短軸端點(diǎn),且到焦點(diǎn)的距離為,點(diǎn)M在橢圓C上運(yùn)動(dòng),且點(diǎn)M不與、重合,點(diǎn)N滿足.
(1)求橢圓C的方程;
(2)求四邊形面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com