16.函數(shù)$y={e^x},y=\frac{e}{x}$與x軸,y軸,x=e所圍成的圖形的面積為( 。
A.2e-1B.2e+1C.2e+2D.2e-2

分析 先求出$y={e^x},y=\frac{e}{x}$的交點(diǎn)坐標(biāo)是(1,e),再由面積與積分的關(guān)系將面積用積分表示出來(lái),由公式求出積分,即可得到面積值.

解答 解:$y={e^x},y=\frac{e}{x}$的交點(diǎn)坐標(biāo)是(1,e),
函數(shù)$y={e^x},y=\frac{e}{x}$與x軸,y軸,x=e所圍成的圖形的面積為:
S=${∫}_{0}^{1}{e}^{x}dx$+${∫}_{1}^{e}\frac{e}{x}dx$=${e}^{x}{|}_{0}^{1}$+e$lnx{|}_{1}^{e}$=2e-1,
故選:A.

點(diǎn)評(píng) 本題考查定積分在求面積中的應(yīng)用,解答本題關(guān)鍵是根據(jù)題設(shè)中的條件建立起面積的積分表達(dá)式,再根據(jù)相關(guān)的公式求出積分的值,用定積分求面積是其重要運(yùn)用,掌握住一些常用函數(shù)的導(dǎo)數(shù)的求法是解題的知識(shí)保證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè){an}是遞增等比數(shù)列,已知a1+a3=5,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng);
(2)令bn=lna3n+1,n=1,2,…,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.用秦九韶算法計(jì)算多項(xiàng)式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4時(shí)的V4值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知k進(jìn)制數(shù)166(k)轉(zhuǎn)化為十進(jìn)制數(shù)78,則把67(k)轉(zhuǎn)化為十進(jìn)制數(shù)為43.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)函數(shù)f(x)=ax-(k-1)a-x(a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求k的值;
(2)若f(1)<0,求使不等式f(x2+tx)+f(4-x)<0對(duì)于任意x∈R恒成立的T的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.方程 9x-12•3x+27=0的解集是{1,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知p:x2-8x-20≤0;q:1-m2≤x≤1+m2.若?p是?q的必要不充分條件,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若雙曲線C:4x2-y2=λ(λ>0)與拋物線y2=4x的準(zhǔn)線交于A,B兩點(diǎn),且$|{AB}|=2\sqrt{2},則λ$的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知數(shù)列{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若Sk-2=-4,Sk=0,Sk+2=8,則k=6.

查看答案和解析>>

同步練習(xí)冊(cè)答案