10.如圖是某賽季甲、乙兩名籃球運(yùn)動(dòng)員每場(chǎng)比賽得分情況的莖葉圖.從這個(gè)莖葉圖可以看出甲、乙兩名運(yùn)動(dòng)員得分的中位數(shù)分別是35,26.

分析 根據(jù)莖葉圖中的數(shù)據(jù),分別求出甲、乙運(yùn)動(dòng)員的得分?jǐn)?shù)據(jù)的中位數(shù)即可.

解答 解:根據(jù)莖葉圖知,甲組數(shù)據(jù)為:
12,15,24,25,31,31,35,36,37,39,44,49,50;
排在中間的數(shù)是35,所以這組數(shù)據(jù)的中位數(shù)是35;
乙組數(shù)據(jù)為:
8,13,14,16,23,26,28,33,38,39,51;
排在中間的數(shù)是26,所以這組數(shù)據(jù)的中位數(shù)是26.
故答案為:35,26.

點(diǎn)評(píng) 本題考查了利用莖葉圖的數(shù)據(jù)求對(duì)應(yīng)中位數(shù)的問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在區(qū)間[-1,5]上隨機(jī)取一個(gè)數(shù)x,若x滿足|x|≤m的概率為$\frac{1}{2}$,則實(shí)數(shù)m為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ln(x+$\sqrt{a+{x}^{2}}$),是定義在R上的奇函數(shù).
(Ⅰ)求a的值.
(Ⅱ)解不等式f(2x)≤f($\frac{6}{lo{g}_{2}(x+1)}$-4)≤ln(3+$\sqrt{10}$);
(Ⅲ)當(dāng)x∈[1,2]時(shí),不等式f(a•4x+a)+f(2x+1)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在矩形ABCD中,AB=4,BC=2,E為BC的中點(diǎn),若F為該矩形內(nèi)(含邊界)任意一點(diǎn),則$\overrightarrow{AE}$•$\overrightarrow{AF}$的最大值為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某單位為制定節(jié)能減排的計(jì)劃,隨機(jī)統(tǒng)計(jì)了某4天的用電量y(單位:度)與當(dāng)天氣溫x(單位:°C),并制作了對(duì)照表(如表),由表中數(shù)據(jù),得線性回歸方程$\hat y=-2x+a$,當(dāng)某天的氣溫為-5°C時(shí),預(yù)測(cè)當(dāng)天的用電量約為( 。
x181310-1
y24343864
A.65度B.68度C.70度D.72度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.定義在實(shí)數(shù)集R上的函數(shù)f(x)是周期為2的周期函數(shù),且當(dāng)x∈[-1,1]時(shí),$f(x)=\left\{\begin{array}{l}{2^x}+1(0≤x≤1)\\{2^{-x}}+1(-1≤x<0)\end{array}\right.$.請(qǐng)?jiān)O(shè)計(jì)計(jì)算f(x)的函數(shù)值的算法程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2x3-3x2+1,g(x)=kx+1-lnx.
(1)若過點(diǎn)P(a,-4)恰有兩條直線與曲線y=f(x)相切,求a的值;
(2)用min{p,q}表示p,q中的最小值,設(shè)函數(shù)h(x)=min{f(x),g(x)}(x>0),若h(x)恰有三個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.閱讀如圖所示的程序框圖,則輸出結(jié)果S的值為$\frac{2016}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知$α∈(0,\frac{π}{6})$,$sin(α+\frac{π}{3})=\frac{12}{13}$,則$cos(\frac{π}{6}-α)$=( 。
A.$\frac{5}{12}$B.$\frac{12}{13}$C.$-\frac{5}{13}$D.$-\frac{12}{13}$

查看答案和解析>>

同步練習(xí)冊(cè)答案