【題目】【2016高考四川文科】已知數(shù)列{ }的首項(xiàng)為1, 為數(shù)列的前n項(xiàng)和, ,其中q>0, .
(Ⅰ)若 成等差數(shù)列,求的通項(xiàng)公式;
(Ⅱ)設(shè)雙曲線 的離心率為 ,且 ,求.
【答案】(Ⅰ);(Ⅱ).
【解析】
試題分析:(Ⅰ)已知的遞推式,一般是寫出當(dāng)時(shí),,兩式相減,利用,得出數(shù)列的遞推式,從而證明為等比數(shù)列,利用等比數(shù)列的通項(xiàng)公式得到結(jié)論;(Ⅱ)先利用雙曲線的離心率定義得到的表達(dá)式,再由解出的值,最后利用等比數(shù)列的求和公式求解計(jì)算.
試題解析:(Ⅰ)由已知, 兩式相減得到.
又由得到,故對所有都成立.
所以,數(shù)列是首項(xiàng)為1,公比為q的等比數(shù)列.
從而.
由成等差數(shù)列,可得,所以,故.
所以.
(Ⅱ)由(Ⅰ)可知,.
所以雙曲線的離心率.
由解得.所以,
,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求在區(qū)間上的最值;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,過拋物線上一點(diǎn)作拋物線的切線交軸于點(diǎn),交軸于點(diǎn),當(dāng)時(shí),.
(1)判斷的形狀,并求拋物線的方程;
(2)若兩點(diǎn)在拋物線上,且滿足,其中點(diǎn),若拋物線上存在異于的點(diǎn),使得經(jīng)過三點(diǎn)的圓和拋物線在點(diǎn)處有相同的切線,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b為常數(shù),且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有兩個(gè)相等實(shí)數(shù)根.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[1,2]時(shí),求f(x)的值域;
(3)若F(x)=f(x)-f(-x),試判斷F(x)的奇偶性,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為 (為參數(shù)).
(I)寫出直線的一般方程與曲線的直角坐標(biāo)方程,并判斷它們的位置關(guān)系;
(II)將曲線向左平移個(gè)單位長度,向上平移個(gè)單位長度,得到曲線,設(shè)曲線經(jīng)過伸縮變換得到曲線,設(shè)曲線上任一點(diǎn)為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017屆河北省正定中學(xué)高三上學(xué)期第三次月考(期中)數(shù)學(xué)(理)】在平面直角坐標(biāo)系中,當(dāng)不是原點(diǎn)時(shí),定義的“伴隨點(diǎn)”為;當(dāng)是原點(diǎn)時(shí),定義的“伴隨點(diǎn)”為它自身,平面曲線上所有點(diǎn)的“伴隨點(diǎn)”所構(gòu)成的曲線定義為曲線的“伴隨曲線”,現(xiàn)有下列命題:
①若點(diǎn)的“伴隨點(diǎn)”是點(diǎn),則點(diǎn)的“伴隨點(diǎn)”是點(diǎn);
②若曲線關(guān)于軸對稱,則其“伴隨曲線” 關(guān)于軸對稱;
③單位圓的“伴隨曲線”是它自身;
④一條直線的“伴隨曲線”是一條直線.
其中真命題的個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合P={x|-2≤x≤10},Q={x|1-m≤x≤1+m}.
(1)求集合RP;
(2)若PQ,求實(shí)數(shù)m的取值范圍;
(3)若P∩Q=Q,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一數(shù)集的任一元素的倒數(shù)仍在該集合中,則稱該數(shù)集為“可倒數(shù)集”.
(1)判斷集合A={-1,1,2}是否為可倒數(shù)集;
(2)試寫出一個(gè)含3個(gè)元素的可倒數(shù)集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若恒成立,求的取值范圍;
(Ⅱ)設(shè),,(為自然對數(shù)的底數(shù)).是否存在常數(shù),使恒成立,若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com