對(duì)某交通要道以往的日車流量(單位:萬(wàn)輛)進(jìn)行統(tǒng)計(jì),得到如下記錄:
日車流量x0≤x<55≤x<1010≤x<1515≤x<2020≤x<25x≥25
頻率0.050.250.350.250.100
將日車流量落入各組的頻率視為概率,并假設(shè)每天的車流量相互獨(dú)立.
(Ⅰ)求在未來(lái)連續(xù)3天里,有連續(xù)2天的日車流量都不低于10萬(wàn)輛且另1天的日車流量低于5萬(wàn)輛的概率;
(Ⅱ)用X表示在未來(lái)3天時(shí)間里日車流量不低于10萬(wàn)輛的天數(shù),求X的分布列和數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量及其分布列,離散型隨機(jī)變量的期望與方差
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)設(shè)A1表示事件“日車流量不低于10萬(wàn)輛”,A2表示事件“日車流量低于5萬(wàn)輛”,B表示事件“在未來(lái)連續(xù)3天里有連續(xù)2天日車流量不低于10萬(wàn)輛且另1天車流量低于5萬(wàn)輛”.直接求出概率即可.
(Ⅱ)X可能取的值為0,1,2,3,求出相應(yīng)的概率,寫出X的分布列,即可求出E(X).
解答: 解:(Ⅰ)設(shè)A1表示事件“日車流量不低于10萬(wàn)輛”,A2表示事件“日車流量低于5萬(wàn)輛”,B表示事件“在未來(lái)連續(xù)3天里有連續(xù)2天日車流量不低于10萬(wàn)輛且另1天車流量低于5萬(wàn)輛”.則
P(A1)=0.35+0.25+0.10=0.70,P(A2)=0.05,
所以P(B)=0.7×0.7×0.05×2=0.049.
(Ⅱ)X可能取的值為0,1,2,3,相應(yīng)的概率分別為P(X=0)=
C
0
3
•(1-0.7)3=0.027
,P(X=1)=
C
1
3
•0.7•(1-0.7)2=0.189
,P(X=2)=
C
2
3
•0.72•(1-0.7)=0.441
,P(X=3)=
C
3
3
•0.73=0.343

X的分布列為
X0123
P0.0270.1890.4410.343
因?yàn)閄~B(3,0.7),所以期望E(X)=3×0.7=2.1.
點(diǎn)評(píng):本題考查離散型隨機(jī)變量的分布列的期望與方差,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法中正確的是( 。
①f(x)=x0與g(x)=1是同一個(gè)函數(shù);
②y=f(x)與y=f(x+1)有可能是同一個(gè)函數(shù);
③y=f(x)與y=f(t)是同一個(gè)函數(shù);
④定義域和值域相同的函數(shù)是同一個(gè)函數(shù).
A、①②B、②③C、②④D、①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a>0,命題p:實(shí)數(shù)x滿足x2-5ax+4a2<0,命題q:實(shí)數(shù)x滿足
x-4
x-2
≤0.
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分而不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是R上的增函數(shù),A(0,-1),B(3,1)是其圖象上的兩點(diǎn),那么f(x+1)<1的解集的補(bǔ)集是( 。
A、(-1,2)
B、(1,4)
C、[2,+∞)
D、[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示偽代碼,最終輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,ABCD是矩形,PA⊥平面ABCD,△PAD是等腰三角形,M、N分別是AB、PC的中點(diǎn).求證:MN⊥平面PCD.(向量法證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2|x|.
(Ⅰ)判斷并證明函數(shù)的奇偶性;
(Ⅱ)畫出函數(shù)g(x)=f(4-x)的圖象,并比較g(-1)與g(6)大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:x-y+4=0,一組直線l1,l2,…l2n(n∈N*)都與直線l平行,到直線l的距離依次為d,2d,…2nd(d>0),且直線ln恰好過(guò)原點(diǎn).
(1)求出li(1≤i≤2n,i∈N*)的方程(用n,i表示);
(2)當(dāng)l5被兩坐標(biāo)軸截得的線段長(zhǎng)為2
2
時(shí),求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某單位有職工75人,其中青年職工35人,中年職工25人,老年職工15人,為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本容量為15,則樣本中的青年職工人數(shù)為( 。
A、7B、15C、25D、35

查看答案和解析>>

同步練習(xí)冊(cè)答案