已知等比數(shù)列{an}的前n項(xiàng)的和為Sn,a1=1,an<an+1,且S3=2S2+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=(2n-1)×an(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)利用等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式即可得出.
(2)bn=(2n-1)×an=(2n-1)×2n-1,再利用“錯(cuò)位相減法”、等比數(shù)列的前n項(xiàng)和公式即可得出.
解答: 解:(1)設(shè)等比數(shù)列{an}的公比為q,
∵a1=1,且S3=2S2+1.
∴1+q+q2=2(1+q)+1,
化為q2-q-2=0,
解得q=-1或2.
∵a1=1,an<an+1,
∴q>1.
∴q=2.
an=2n-1
(2)bn=(2n-1)×an=(2n-1)×2n-1,
∴數(shù)列{bn}的前n項(xiàng)和Tn=1+3×2+5×22+…+(2n-1)×2n-1,
2Tn=2+3×22+5×23+…+(2n-3)×2n-1+(2n-1)×2n,
∴-Tn=1+2×2+2×22+…+2n-1-+(2n-1)×2n=
2×(2n-1)
2-1
-1-(2n-1)×2n=(3-2n)×2n-3,
∴Tn=(2n-3)×2n+3.
點(diǎn)評:本題考查了等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、“錯(cuò)位相減法”,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|
3x+1
x-3
≥2},B={x|(x-1)(x-3)2≤0},則A∪B等于( 。
A、(3,+∞)
B、(-∞,-7]
C、(-∞,1]∪(3,﹢∞)
D、(-∞,1]∪[3.﹢∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={a,c},N={a,b,c},則M∩N=( 。
A、{a}
B、{a,b}
C、{a,c}
D、{a,b,c}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù){an}列的前項(xiàng)和為Sn,λSn+1=Sn+4(n∈N+,λ為常數(shù)),a1=2,a2=1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=
log2an+1
an+1
,Sn=b1+b2++bn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-2y2=1(a>0)的右焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,則此雙曲線的漸近線方程是( 。
A、y=±
3
3
x
B、y=±
2
2
x
C、y=±
2
x
D、y=±x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,D在BC上,
BD
=2
DC
,設(shè)
AB
=
a
,
AC
=
b
,則
AD
=( 。
A、
2
3
a
+
1
3
b
B、
1
3
a
+
2
3
b
C、
1
2
a
+
1
2
b
D、
1
2
a
-
1
2
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程
x2
1+k
+
y2
1-k
=1表示雙曲線,則實(shí)數(shù)k的取值范圍是( 。
A、k<-1
B、k>1
C、-1<k<1
D、k<-1或k>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖的程序框圖,任意輸入一次x(x∈Z,-2≤x≤2)與y(y∈Z,-2≤y≤2),則能輸出數(shù)對(x,y)的概率為(  )
A、
9
25
B、
1
2
C、
1
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已和cos2α+4sinαcosα+4sin2α=5,則tanα=
 

查看答案和解析>>

同步練習(xí)冊答案