【題目】如圖,在圓內(nèi)接四邊形中,,,.
(1)求的大;
(2)求面積的最大值.
【答案】(1);(2).
【解析】
試題分析:
(1)在中,由余弦定理得,則,結(jié)合圓的內(nèi)接四邊形的性質(zhì)可得.
(2)法1:在中,由余弦定理得,結(jié)合均值不等式的結(jié)論有,則. .當(dāng)且僅當(dāng),面積的最大值為.
法2:由幾何關(guān)系可知,當(dāng)為弧中點(diǎn)時(shí),上的高最大,此時(shí)是等腰三角形,此時(shí)上的高,據(jù)此可得面積的最大值為.
試題解析:
(1)在中,由余弦定理得
,
解得,
注意到,
可得.
(2)法1:在中,由余弦定理得
,
即 ,
∵,
∴,即.
∴ .
當(dāng)且僅當(dāng),△BCD為等腰三角形時(shí)等號(hào)成立,
即面積的最大值為.
法2:如圖,當(dāng)為弧中點(diǎn)時(shí),上的高最大,此時(shí)是等腰三角形,易得,作上的高,
在中,由,,得,
可得 ,
綜上知,即面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+1,g(x)=2alnx+1(a∈R)
(1)求函數(shù)h(x)=f(x)g(x)的極值;
(2)當(dāng)a=e時(shí),是否存在實(shí)數(shù)k,m,使得不等式g(x)≤ kx+m ≤f(x)恒成立?若存在,請(qǐng)求實(shí)數(shù)k,m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,且和滿足: .
(1)求的通項(xiàng)公式;
(2)設(shè),求的前項(xiàng)和;
(3)在(2)的條件下,對(duì)任意,都成立,求整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開(kāi)展了“冰雪答題王”冬奧知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取了名學(xué)生,將他們的比賽成績(jī)(滿分為分)分為組:,,,,,,得到如圖所示的頻率分布直方圖.
(Ⅰ)求的值;
(Ⅱ)記表示事件“從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取一名學(xué)生,該學(xué)生的比賽成績(jī)不低于分”,估計(jì)的概率;
(Ⅲ)在抽取的名學(xué)生中,規(guī)定:比賽成績(jī)不低于分為“優(yōu)秀”,比賽成績(jī)低于分為“非優(yōu)秀”.請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“比賽成績(jī)是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
參考公式及數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了加強(qiáng)學(xué)生數(shù)學(xué)核心素養(yǎng)的培養(yǎng),鍛煉學(xué)生自主探究學(xué)習(xí)的能力,他們以教材第97頁(yè)B組第3題的函數(shù)為基本素材,研究該函數(shù)的相關(guān)性質(zhì),取得部分研究成果如下:
①同學(xué)甲發(fā)現(xiàn):函數(shù)是偶函數(shù);
②同學(xué)乙發(fā)現(xiàn):對(duì)于任意的都有;
③同學(xué)丙發(fā)現(xiàn):對(duì)于任意的,都有;
④同學(xué)丁發(fā)現(xiàn):對(duì)于函數(shù)定義域中任意的兩個(gè)不同實(shí)數(shù),總滿足.
其中所有正確研究成果的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時(shí),輪船位于港口的O北偏西30°且與該港口相距20海里的A處,并正以30海里/小時(shí)的航行速度沿正東方向勻速行駛.假設(shè)該小艇沿直線方向以v海里/小時(shí)的航行速度勻速行駛,經(jīng)過(guò)t小時(shí)與輪船相遇.
(I)若希望相遇時(shí)小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
(II)為保證小艇在30分鐘內(nèi)(含30分鐘)能與輪船相遇,試確定小艇航行速度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別為,且,
⊙與該橢圓有且只有一個(gè)公共點(diǎn).
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)的直線與⊙相切,且與橢圓相交于兩點(diǎn),求證:;
(3)過(guò)點(diǎn)的直線與⊙相切,且與橢圓相交于兩點(diǎn),試探究的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com