【題目】在測試中,客觀題難題的計(jì)算公式為,其中為第題的難度, 為答對(duì)該題的人數(shù), 為參加測試的總?cè)藬?shù).現(xiàn)對(duì)某校高三年級(jí)120名學(xué)生進(jìn)行一次測試,共5道客觀題.測試前根據(jù)對(duì)學(xué)生的了解,預(yù)估了每道題的難度,如下表所示:
測試后,從中隨機(jī)抽取了10名學(xué)生,將他們編號(hào)后統(tǒng)計(jì)各題的作答情況,如下表所示(“√”表示答對(duì),“×”表示答錯(cuò)):
(1)根據(jù)題中數(shù)據(jù),將抽樣的10名學(xué)生每道題實(shí)測的答對(duì)人數(shù)及相應(yīng)的實(shí)測難度填入下表,并估計(jì)這120名學(xué)生中第5題的實(shí)測答對(duì)人數(shù);
(2)從編號(hào)為1到5的5人中隨機(jī)抽取2人,求恰好有1人答對(duì)第5題的概率;
(3)定義統(tǒng)計(jì)量,其中為第題的實(shí)測難度, 為第題的預(yù)估難度().規(guī)定:若,則稱該次測試的難度預(yù)估合理,否則為不合理.判斷本次測試的難度預(yù)估是否合理.
【答案】(1)見解析,24 (2) (3)該次測試的難度預(yù)估是合理的.
【解析】試題分析:(1)根據(jù)題中數(shù)據(jù),統(tǒng)計(jì)各題答對(duì)的人數(shù),進(jìn)而根據(jù)Pi ,得到難度系數(shù);
(2)根據(jù)古典概型概率計(jì)算公式,可得從編號(hào)為1到5的5人中隨機(jī)抽取2人,求恰好有1人答對(duì)第5題的概率;(3)由計(jì)算出S值與0.05比較,可得答案.
試題解析:
(1) 每道題實(shí)測的答對(duì)人數(shù)及相應(yīng)的實(shí)測難度如下表:
所以,估計(jì)120人中有人答對(duì)第5題.
(2) 記編號(hào)為的學(xué)生為(),從這5人中隨機(jī)抽取2人,不同的抽取方法有10種.
其中恰好有1人答對(duì)第5題的抽取方法為,共6種.
所以,從抽樣的10名學(xué)生中隨機(jī)抽取2名答對(duì)至少4道題的學(xué)生,恰好有1人答對(duì)第5題的概率為.
(3)為抽樣的10名學(xué)生中第題的實(shí)測難度,用作為這120名學(xué)生第題的實(shí)測難度.
因?yàn)?/span>,所以,該次測試的難度預(yù)估是合理的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga (a>0,a≠1,m≠﹣1),是定義在(﹣1,1)上的奇函數(shù).
(1)求f(0)的值和實(shí)數(shù)m的值;
(2)當(dāng)m=1時(shí),判斷函數(shù)f(x)在(﹣1,1)上的單調(diào)性,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】盒中有6只燈泡,其中有2只是次品,4只是正品.從中任取2只,試求下列事件的概率.
(Ⅰ)取到的2只都是次品;
(Ⅱ)取到的2只中恰有一只次品.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次水下考古活動(dòng)中,某一潛水員需潛水50米到水底進(jìn)行考古作業(yè),其用氧量包含以下三個(gè)方面:
①下潛平均速度為米/分鐘,每分鐘的用氧量為升;
②水底作業(yè)時(shí)間范圍是最少10分鐘最多20分鐘,每分鐘用氧量為0.3升;
③返回水面時(shí),平均速度為米/分鐘,每分鐘用氧量為0.32升;潛水員在此次考古活動(dòng)中的總用氧量為升.
(1)如果水底作業(yè)時(shí)間是10分鐘,將表示為的函數(shù);
(2)若,水底作業(yè)時(shí)間為20分鐘,求總用氧量的取值范圍;
(3)若潛水員攜帶氧氣13.5升,請(qǐng)問潛水員最多在水下多少分鐘(結(jié)果取整數(shù))?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線上任意一點(diǎn)到直線的距離比到點(diǎn)的距離大1.
(1)求曲線的方程;
(2)過曲線的焦點(diǎn),且傾斜角為的直線交于點(diǎn)(在軸上方), 為的準(zhǔn)線,點(diǎn)在上且,求到直線的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ,橢圓以的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),點(diǎn)分別在橢圓和上, ,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,2,在Rt△ABC中,AB=BC=4,點(diǎn)E在線段AB上,過點(diǎn)E作交AC于點(diǎn)F,將△AEF沿EF折起到△PEF的位置(點(diǎn)A與P重合),使得∠PEB=60°.
(1)求證:EF⊥PB;
(2)試問:當(dāng)點(diǎn)E在何處時(shí),四棱錐P﹣EFCB的側(cè)面的面積最大?并求此時(shí)四棱錐P﹣EFCB的體積及直線PC與平面EFCB所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓M: =1(a>b>0)的離心率為 ,直線x=±a和y=±b所圍成的矩形ABCD的面積為8.
(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l:y=x+m(m∈R)與橢圓M有兩個(gè)不同的交點(diǎn)P,Q,l與矩形ABCD有兩個(gè)不同的交點(diǎn)S,T.求 的最大值及取得最大值時(shí)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x+2)的定義域?yàn)椋?,2),則函數(shù)y=f(log2x)的定義域?yàn)椋?/span> )
A.(﹣∞,1)
B.(1,4)
C.(4,16)
D.( ,1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com