A. | $(0,\frac{1}{2})$ | B. | $(\frac{1}{2},1)$ | C. | $(1,\frac{3}{2})$ | D. | $(\frac{3}{2},2)$ |
分析 函數(shù)零點左右兩邊函數(shù)值的符號相反,根據(jù)函數(shù)在一個區(qū)間上兩個端點的函數(shù)值的符號確定是否存在零點.
解答 解:∵f($\frac{3}{2}$)=$\frac{9}{4}$+lg$\frac{3}{2}$-3=-$\frac{3}{4}$+lg$\frac{3}{2}$<-$\frac{3}{4}$+lg$\sqrt{10}$=-$\frac{3}{4}$+$\frac{1}{2}$=-$\frac{1}{4}$<0,
f(2)=4+lg2-3=1+lg2>0,
∴f($\frac{3}{2}$)f(2)<0,
根據(jù)零點定理知,
f(x)的零點在區(qū)間($\frac{3}{2}$,2)上.
故選:D.
點評 本題考查函數(shù)的零點的判定定理,本題解題的關(guān)鍵是求出區(qū)間的兩個端點的函數(shù)值,進行比較,本題是一個基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $y={5^{\frac{1}{2-x}}}$ | B. | $y={({\frac{1}{3}})^{1-x}}$ | C. | $y=\sqrt{1-{2^x}}$ | D. | $y=\sqrt{{{(\frac{1}{2})}^x}-1}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [3-$\sqrt{3}$,2) | B. | $(\sqrt{5}-1,\sqrt{3})$ | C. | $(1,\sqrt{3})$ | D. | $(1,3-\sqrt{3})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 8 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com