A. | -1 | B. | 1 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
分析 目標(biāo)函數(shù)Z=mx+y,取得最大值的最優(yōu)解有無數(shù)個(gè)知取得最優(yōu)解必在邊界上,目標(biāo)函數(shù)的截距取得最大值,故最大值應(yīng)在左上方邊界AC上取到,即mx+y=0應(yīng)與直線AC平行;進(jìn)而計(jì)算可得m的值.
解答 解:由題意,z=mx+y(m>0)在平面區(qū)域內(nèi)取得最大值的最優(yōu)解有無數(shù)多個(gè),
最優(yōu)解應(yīng)在線段AC上取到,故mx+y=0應(yīng)與直線AC平行
∵kAC=$\frac{4-2}{1-3}$=-1,
∴-m=-1,
∴m=1.
故選:B.
點(diǎn)評(píng) 目標(biāo)函數(shù)的最優(yōu)解有無數(shù)多個(gè),處理方法一般是:①將目標(biāo)函數(shù)的解析式進(jìn)行變形,化成斜截式②分析Z與截距的關(guān)系,是符號(hào)相同,還是相反③根據(jù)分析結(jié)果,結(jié)合圖形做出結(jié)論④根據(jù)斜率相等求出參數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 關(guān)于直線x=$\frac{π}{12}$對(duì)稱 | B. | 關(guān)于直線x=$\frac{5π}{12}$對(duì)稱 | ||
C. | 關(guān)于點(diǎn)($\frac{π}{12}$,0)對(duì)稱 | D. | 關(guān)于點(diǎn)($\frac{5π}{12}$,0)對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$+$\frac{\sqrt{3}}{2}$i | B. | $\frac{3}{2}$-$\frac{\sqrt{3}}{2}$i | C. | $\frac{3}{4}$+$\frac{\sqrt{3}}{4}$i | D. | $\frac{3}{4}$-$\frac{\sqrt{3}}{4}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | a>c>b | D. | c>a>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-3,5] | B. | [-5,3] | C. | {-3,5} | D. | {-5,3} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com