12.如圖,從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出60名,將其成績(jī)(均為整數(shù))整理后畫出的頻率分布直方圖如圖:觀察圖形,回答下列問題:

(1)79.5~89.5這一組的頻數(shù)、頻率分別是多少?
(2)樣本的眾數(shù)、中位數(shù)的估計(jì)值分別是多少?(保留小數(shù)點(diǎn)后三位)
(3)估計(jì)這次環(huán)保知識(shí)競(jìng)賽的及格率(60分及以上為及格).

分析 (1)利用頻率分布直方圖中,縱坐標(biāo)與組距的乘積是相應(yīng)的頻率,頻數(shù)=頻率×組距,可得結(jié)論;
(2)根據(jù)頻率分步直方圖中計(jì)算平均數(shù)、眾數(shù)、中位數(shù)的方法,計(jì)算可得答案.;
(3)縱坐標(biāo)與組距的乘積是相應(yīng)的頻率,再求和,即可得到結(jié)論.

解答 解:(1)由頻率的意義可知,成績(jī)?cè)?9.5~89.5這一組的頻率為:0.025×10=0.25,頻數(shù):60×0.25=15
(2)79.5~89.5一組的頻率最大,人數(shù)最多,則眾數(shù)為84.5,
69.5分左右兩側(cè)的頻率均為0.5,則中位數(shù)為69.5;
(3)利用縱坐標(biāo)與組距的乘積是相應(yīng)的頻率可得0.015×10+0.025×10+0.03×10+0.005×10=0.75.

點(diǎn)評(píng) 本題屬于統(tǒng)計(jì)內(nèi)容,考查分析頻數(shù)分布直方圖和頻率的求法.直方圖中的各個(gè)矩形的面積代表了頻率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=x2-2x,g(x)=2x+a,若對(duì)于任意x1∈[-1,2],均存在x2∈[-1,2],使得f(x1)=g(x2),則實(shí)數(shù)a的取值范圍是( 。
A.[-1,1]B.(-∞,-1]∪[1,+∞)C.[-1,2]D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知角α的終邊經(jīng)過點(diǎn)(3,-4),則cosα的值為( 。
A.-$\frac{3}{4}$B.$\frac{3}{5}$C.-$\frac{4}{5}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列程序的功能是(  )
S=1
i=1
WHILE S<=2012
i=i+2
S=S×i
WEND
PRINT i
END.
A.計(jì)算1+3+5+…+2012
B.計(jì)算1×3×5×…×2012
C.求方程1×3×5×…×i=2012中的i值
D.求滿足1×3×5×…×i>2012的最小整數(shù)i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知點(diǎn)P(cosx,sinx)在直線y=3x上,則sinxcosx的值是( 。
A.$\frac{1}{6}$B.$\frac{1}{5}$C.$\frac{3}{10}$D.$\frac{2}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知復(fù)數(shù)z=3+4i,它的共軛復(fù)數(shù)記為$\overline z$,則|z•($\overline z$+1)|=20$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.求函數(shù)y=$\frac{{{x^4}+2{x^2}+5}}{{{x^2}+1}}$的最小值5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.把正整數(shù)1,2,3,4,5,6,…按某種規(guī)律填入如表:
261014
145891213
371115
按這種規(guī)律連續(xù)填寫,2015出現(xiàn)在第3行,第1511 列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.“序數(shù)”指每個(gè)數(shù)字比其左邊的數(shù)字大的自然數(shù)(如1258),在兩位的“序數(shù)”中任取一個(gè)數(shù)比56大的概率是( 。
A.$\frac{1}{4}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案