在高中“自選模塊”考試中,某考場(chǎng)的每位同學(xué)都選了一道數(shù)學(xué)題,第一小組選《數(shù)學(xué)史與不等式選講》的有1人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有5人,第二小組選《數(shù)學(xué)史與不等式選講》的有2人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有4人,現(xiàn)從第一、第二兩小組各任選2人分析得分情況.

(1)求選出的4人均為選《矩陣變換和坐標(biāo)系與參數(shù)方程》的概率;

(2)設(shè)X為選出的4個(gè)人中選《數(shù)學(xué)史與不等式選講》的人數(shù),求X的分布列和數(shù)學(xué)期望.

 

(1) (2) X的分布列為

X

0

1

2

3

P

1

【解析】

【解析】
(1)設(shè)“從第一小組選出的2人均選《矩陣變換和坐標(biāo)系與參數(shù)方程》”為事件A,“從第二小組選出的2人均選《矩陣變換和坐標(biāo)系與參數(shù)方程》”為事件B.

由于事件A、B相互獨(dú)立,

所以P(A)=,P(B)=

所以選出的4人均選《矩陣變換和坐標(biāo)系與參數(shù)方程》的概率為P(A·B)=P(A)·P(B)=×.

(2)X可能的取值為0,1,2,3,則

P(X=0)=,P(X=1)=··,

P(X=3)=·.

P(X=2)=1-P(X=0)-P(X=1)-P(X=3)=.

故X的分布列為

X

0

1

2

3

P

所以X的數(shù)學(xué)期望E(X)=0×+1×+2×+3×=1 (人).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達(dá)標(biāo)3章練習(xí)卷(解析版) 題型:填空題

設(shè)有一個(gè)回歸方程為=3-5x,變量x增加一個(gè)單位時(shí)________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達(dá)標(biāo)2章練習(xí)卷(解析版) 題型:填空題

已知X~N(0,1),則P(-1<X<2)=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達(dá)標(biāo)2.5練習(xí)卷(解析版) 題型:解答題

某籃球隊(duì)與其他6支籃球隊(duì)依次進(jìn)行6場(chǎng)比賽,每場(chǎng)均決出勝負(fù),設(shè)這支籃球隊(duì)與其他籃球隊(duì)比賽勝場(chǎng)的事件是獨(dú)立的,并且勝場(chǎng)的概率是.

(1)求這支籃球隊(duì)首次勝場(chǎng)前已經(jīng)負(fù)了兩場(chǎng)的概率;

(2)求這支籃球隊(duì)在6場(chǎng)比賽中恰好勝了3場(chǎng)的概率;

(3)求這支籃球隊(duì)在6場(chǎng)比賽中勝場(chǎng)數(shù)的期望和方差.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達(dá)標(biāo)2.5練習(xí)卷(解析版) 題型:填空題

已知離散型隨機(jī)變量X的分布列如表,若E(X)=0,D(X)=1,則a=________,b=________.

X

-1

0

1

2

P

a

b

c

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達(dá)標(biāo)2.5練習(xí)卷(解析版) 題型:解答題

某廣場(chǎng)上有4盞裝飾燈,晚上每盞燈都隨機(jī)地閃爍紅燈或綠燈,每盞燈出現(xiàn)紅燈的概率都是,出現(xiàn)綠燈的概率都是.記這4盞燈中出現(xiàn)紅燈的數(shù)量為X,當(dāng)這排裝飾燈閃爍一次時(shí):

(1)求X=2時(shí)的概率;

(2)求X的數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達(dá)標(biāo)2.4練習(xí)卷(解析版) 題型:解答題

設(shè)進(jìn)入某商場(chǎng)的每一位顧客購(gòu)買甲種商品的概率為0.5,購(gòu)買乙種商品的概率為0.6,且購(gòu)買甲種商品與購(gòu)買乙種商品相互獨(dú)立,各顧客之間購(gòu)買商品是相互獨(dú)立的.

(1)求進(jìn)入該商場(chǎng)的1位顧客購(gòu)買甲、乙兩種商品中的一種的概率;

(2)求進(jìn)入該商場(chǎng)的3位顧客中,至少有2位顧客既未購(gòu)買甲種商品也未購(gòu)買乙種商品的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達(dá)標(biāo)2.3練習(xí)卷(解析版) 題型:填空題

在一次數(shù)學(xué)考試中,第14題和第15題為選做題.規(guī)定每位考生必須且只須在其中選做一題.設(shè)4名考生選做這兩題的可能性均為.則其中甲、乙兩名學(xué)生選做同一道題的概率為_(kāi)_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達(dá)標(biāo)1章練習(xí)卷(解析版) 題型:解答題

設(shè)集合I={1,2,3,4,5}.選擇I的兩個(gè)非空子集A和B,求使B中最小的數(shù)大于A中最大的數(shù)的不同選擇方法有多少種?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案