2.i為虛數(shù)單位,則($\frac{1+i}{1-i}}$)2016=( 。
A.iB.-iC.1D.-1

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)復(fù)數(shù)$\frac{1+i}{1-i}}$,則答案可求.

解答 解:$\frac{1+i}{1-i}}$=$\frac{(1+i)^{2}}{(1-i)(1+i)}=\frac{2i}{2}=i$,
則($\frac{1+i}{1-i}}$)2016=i2016=(i4504=1.
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知正方形ABCD所在平面與正方形ABEF所在平面互相垂直,M為AC上一點(diǎn),N為BF 上一點(diǎn),且AM=FN.
(1)求證:MN∥平面CBE;
(2)求證:MN⊥AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在平面直角坐標(biāo)系中,點(diǎn)P是直線l:x=-$\frac{1}{2}$上一動(dòng)點(diǎn),定點(diǎn)F($\frac{1}{2}$,0)點(diǎn)Q為PF的中點(diǎn),動(dòng)點(diǎn)M滿足$\overline{MQ}$•$\overline{PF}$=0,$\overline{MP}$=λ$\overline{OF}$(λ∈R),過(guò)點(diǎn)M作圓(x-3)2+y2=2的切線,切點(diǎn)分別為S,T,則|ST|的最小值為( 。
A.$\frac{2\sqrt{30}}{5}$B.$\frac{\sqrt{30}}{5}$C.$\frac{7}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=x-alnx,g(x)=-$\frac{1+a}{x}$,(a∈R).
(1)設(shè)函數(shù)h(x)=f(x)-g(x),當(dāng)a>0時(shí)求函數(shù)h(x)的單調(diào)區(qū)間;
(2)若在[1,e](e=2.718…)上存在一點(diǎn)x0,使得f(x0)<g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知集合A={x|x2-11x-12<0},集合B={x|x=3n+1,n∈Z},則A∩B等于{1,4,7,10}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖中所示的程序框圖,輸出S的表達(dá)式為(  )
A.$\frac{1}{99}$B.$\frac{1}{1+2+3+…+99}$C.$\frac{1}{100}$D.$\frac{1}{1+2+3+…+100}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知cos(α-30°)+sinα=$\frac{3}{5}\sqrt{3}$,那么cos(60°-α)=( 。
A.$-\frac{4}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,點(diǎn)P在雙曲線右支上,且滿足|PF2|=|F1F2|,若直線PF1與圓x2+y2=a2有公共點(diǎn),則該雙曲線的離心率的取值范圍為1<e≤$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某市有中型水庫(kù)1座,小型水庫(kù)3座,當(dāng)水庫(kù)的水位超過(guò)警戒水位時(shí)就需要泄洪.氣象部門預(yù)計(jì),今年夏季雨水偏多,中型水庫(kù)需要泄洪的概率為$\frac{2}{5}$,小弄水庫(kù)需要泄洪的概率為$\frac{1}{2}$,假設(shè)每座水庫(kù)是否泄洪相互獨(dú)立.
(1)求至少有一座水庫(kù)需要泄洪的概率;
(2)設(shè)1座中型水庫(kù)泄洪造成的損失量為2個(gè)單位,1座小型水庫(kù)泄洪造成的損失量為1個(gè)單位,設(shè)ξ表示這4座水庫(kù)泄洪所造成的損失量之和,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案