13.在平面直角坐標系中,點P是直線l:x=-$\frac{1}{2}$上一動點,定點F($\frac{1}{2}$,0)點Q為PF的中點,動點M滿足$\overline{MQ}$•$\overline{PF}$=0,$\overline{MP}$=λ$\overline{OF}$(λ∈R),過點M作圓(x-3)2+y2=2的切線,切點分別為S,T,則|ST|的最小值為( 。
A.$\frac{2\sqrt{30}}{5}$B.$\frac{\sqrt{30}}{5}$C.$\frac{7}{2}$D.$\frac{5}{2}$

分析 由題意首先求出M的軌跡方程,然后在M滿足的曲線上設點,只要求曲線上到圓心的距離的最小值,即可得到|ST|的最小值.

解答 解:設M坐標為 M(x,y),由MP⊥l知 P(-$\frac{1}{2}$,y),
由點Q為PF的中點知 Q(0,$\frac{y}{2}$),
又因為QM⊥PF,QM、PF斜率乘積為-1,即$\frac{y-\frac{y}{2}}{x}=-\frac{-\frac{1}{2}-\frac{1}{2}}{y}$,
解得:y2=2x,
∴M的軌跡是拋物線,
設M(y2,$\sqrt{2}$y),到圓心(3,0)的距離為d,
d2=(y2-3)2+2y2=y4-4y2+9=(y2-2)2+5,
∴y2=2時,dmin=$\sqrt{5}$,此時的切線長為$\sqrt{5-2}$=$\sqrt{3}$,
∴|ST|的最小值為2×$\frac{\sqrt{3}×\sqrt{2}}{\sqrt{5}}$=$\frac{2\sqrt{30}}{5}$.
故選:A.

點評 本題考查了拋物線軌跡方程的求法以及與圓相關(guān)的距離的最小值求法,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,在正△ABC中,點D、E分別在邊AC、AB上,且$AD=\frac{1}{3}AC$,$AE=\frac{2}{3}AB$,BD、CE相交于點F.
(Ⅰ)求證:A、E、F、D四點共圓,并求∠BFC的大小;
(Ⅱ)求證:2BF•BD=CF•CE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$過點$({2,\sqrt{3}})$,離心率為$\sqrt{2}$.
(1)求雙曲線的標準方程和焦點坐標;
(2)已知點P在雙曲線上,且∠F1PF2=90°,求點P到x軸的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.計算:
(Ⅰ)${({0.027})^{\frac{1}{3}}}-{(\frac{1}{8})^{-2}}+{(2\frac{7}{9})^{\frac{1}{2}}}•{(1+\sqrt{5})^0}$
(Ⅱ)$\frac{1}{2}lg25+2lg\sqrt{2}-lg\sqrt{0.1}+{log_4}32$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知遞減等差數(shù)列{an}中,a3a7=-12,a4+a6=4,則
(1)求數(shù)列的通項an及前n項和Sn;
(2)求數(shù)列{|an|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知不等式x2+px+1>2x+p,當|p|≤2時恒成立,則實數(shù)x的取值范圍是(-∞,-1)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.(1)化簡:$\frac{tan(π+α)cos(2π+α)sin(α-\frac{3π}{2})}{cos(-α-3π)sin(-3π-α)}$;
(2)已知f(x)=$\frac{sin(π-x)cos(2π-x)tan(-x+π)}{{cos(-\frac{π}{2}+x)}}$,求f(-$\frac{31π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.i為虛數(shù)單位,則($\frac{1+i}{1-i}}$)2016=( 。
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知“?x∈R,ax2+2ax+1≥0”為真命題,試求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案