14.已知cos(α-30°)+sinα=$\frac{3}{5}\sqrt{3}$,那么cos(60°-α)=(  )
A.$-\frac{4}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

分析 利用兩角和差的三角公式求得sin(α+30°)=$\frac{3}{5}$,再利用誘導公式求得cos(60°-α)=sin(α+30°) 的值.

解答 解:∵cos(α-30°)+sinα=cosα•$\frac{\sqrt{3}}{2}$+sinα•$\frac{1}{2}$+sinα=$\sqrt{3}$sin(α+30°)=$\frac{3}{5}\sqrt{3}$,
∴sin(α+30°)=$\frac{3}{5}$,那么cos(60°-α)=sin(α+30°)=$\frac{3}{5}$,
故選:D.

點評 本題主要考查兩角和差的三角公式,誘導公式的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$過點$({2,\sqrt{3}})$,離心率為$\sqrt{2}$.
(1)求雙曲線的標準方程和焦點坐標;
(2)已知點P在雙曲線上,且∠F1PF2=90°,求點P到x軸的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.(1)化簡:$\frac{tan(π+α)cos(2π+α)sin(α-\frac{3π}{2})}{cos(-α-3π)sin(-3π-α)}$;
(2)已知f(x)=$\frac{sin(π-x)cos(2π-x)tan(-x+π)}{{cos(-\frac{π}{2}+x)}}$,求f(-$\frac{31π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.i為虛數(shù)單位,則($\frac{1+i}{1-i}}$)2016=( 。
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=x+$\frac{a}{x}$+b(x≠0),其中a,b∈R.
(Ⅰ)若f′(1)=9,f(x)的圖象過點(2,7),求f(x)的解析式;
(Ⅱ)討論f(x)的單調(diào)性;
(Ⅲ)當a>2時,求f(x)在區(qū)間[1,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow$=(cosβ,sinβ),$\overrightarrow{a}$與$\overrightarrow$之間有關系|k$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow$|,其中k>0.
(1)用k表示$\overrightarrow{a}$•$\overrightarrow$;
(2)求$\overrightarrow{a}$•$\overrightarrow$的最小值,并求此時$\overrightarrow{a}$•$\overrightarrow$的夾角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)=sinx-cosx,且f′(x)=$\frac{1}{2}$f(x),則tan2x的值是(  )
A.-$\frac{2}{3}$B.-$\frac{4}{3}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知“?x∈R,ax2+2ax+1≥0”為真命題,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{5}^{|x-1|}-1,x≥0}\\{{x}^{2}+4x+4,x<0}\end{array}\right.$,則關于x的方程f2(x)-5(f(x)+4=0的實數(shù)根的個數(shù)為( 。
A.2B.3C.6D.7

查看答案和解析>>

同步練習冊答案