設(shè)數(shù)列的前項和為.已知,=an+1-n2-n-()
(1) 求的值;
(2) 求數(shù)列的通項公式;
(3) 證明:對一切正整數(shù),有++…+<.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2012•廣東)設(shè)數(shù)列{an}的前n項和為Sn,滿足,且a1,a2+5,a3成等差數(shù)列.
(1)求a1的值;
(2)求數(shù)列{an}的通項公式;
(3)證明:對一切正整數(shù)n,有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
拋物線,直線過拋物線的焦點,交軸于點.
(1)求證:;
(2)過作拋物線的切線,切點為(異于原點),
(。是否恒成等差數(shù)列,請說明理由;
(ⅱ)重心的軌跡是什么圖形,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
下列命題正確的是 ( )
①若數(shù)列是等差數(shù)列,且,
則;
②若是等差數(shù)列的前項的和,則成等差數(shù)列;
③若是等比數(shù)列的前項的和,則成等比數(shù)列;
④若是等比數(shù)列的前項的和,且;(其中是非零常數(shù),),則為零.
A.①② | B.②③ | C.②④ | D.③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一個三角形數(shù)表按如下方式構(gòu)成(如圖:其中項數(shù)):第一行是以4為首項,4為公差的等差數(shù)列,從第二行起,每一個數(shù)是其肩上兩個數(shù)的和,例如:;為數(shù)表中第行的第個數(shù).
求第2行和第3行的通項公式和;
證明:數(shù)表中除最后2行外每一行的數(shù)都依次成等差數(shù)列,并求關(guān)于()的表達(dá)式;
(3)若,,試求一個等比數(shù)列,使得,且對于任意的,均存在實數(shù)?,當(dāng)時,都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足(為常數(shù),)
(1)當(dāng)時,求;
(2)當(dāng)時,求的值;
(3)問:使恒成立的常數(shù)是否存在?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知公差不為零的等差數(shù)列,等比數(shù)列,滿足,,.
(1)求數(shù)列、的通項公式;
(2)若,求數(shù)列{}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}前n項和為Sn,首項為a1,且,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}滿足,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com