6.一個扇形OAB的面積為1平方厘米,它的周長為4厘米,則它的中心角是( 。
A.2弧度B.3弧度C.4弧度D.5弧度

分析 根據(jù)題意設出扇形的弧長與半徑,通過扇形的周長與面積,即可求出扇形的弧長與半徑,進而根據(jù)公式α=$\frac{l}{r}$求出扇形圓心角的弧度數(shù).

解答 解:設扇形的弧長為:l,半徑為r,
所以2r+l=4,S面積=$\frac{1}{2}$lr=1,
所以解得:r=1,l=2,
所以扇形的圓心角的弧度數(shù)是α=$\frac{l}{r}$=$\frac{2}{1}$=2.
故選:A.

點評 本題考查弧度制下,扇形的面積及弧長公式的運用,注意與角度制下的公式的區(qū)別與聯(lián)系,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.化簡 $\overrightarrow{AC}-\overrightarrow{BD}+\overrightarrow{CD}-\overrightarrow{AB}$=( 。
A.$\overrightarrow{AB}$B.$\overrightarrow{BC}$C.$\overrightarrow{DA}$D.$\overrightarrow 0$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.研究某校女學生身高和體重的關系,用相關指數(shù)R2來刻畫回歸效果時,如果可以敘述為“身高解釋了64%的體重變化,而隨機誤差貢獻了剩余的36%,所以身高對體重的效應比隨機誤差的效應大得多”,則相關指數(shù)R2≈0.64.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設函數(shù)f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.
(1)若f′(3)=0,求常數(shù)a的值;  
(2)若f(x)在(-∞,0)上為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知A(1,3),B(4,-1),則與向量$\overrightarrow{AB}$共線的單位向量為( 。
A.$({\frac{4}{5},\frac{3}{5}})$或$({-\frac{4}{5},\frac{3}{5}})$B.$({\frac{3}{5},-\frac{4}{5}})$或$({-\frac{3}{5},\frac{4}{5}})$C.$({-\frac{4}{5},-\frac{3}{5}})$或$({\frac{4}{5},\frac{3}{5}})$D.$({-\frac{3}{5},-\frac{4}{5}})$或$({\frac{3}{5},\frac{4}{5}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.下列說法正確的是①④.
①利用樣本點的散點圖可以直觀的判斷兩個變量的關系是否可以用線性關系表示.
②相關系數(shù)-1≤r≤1 且r 越大相關性越強
③用相關指數(shù)R2刻畫回歸方程的擬合效果,R2越小,擬合效果越好.
④殘差平方和越小的回歸模型,擬合效果越好.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知空間四邊形ABCD,鏈接AC,BD,則$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$為( 。
A.$\overrightarrow{AD}$B.$\overrightarrow{BD}$C.$\overrightarrow{AC}$D.$\overrightarrow{0}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設函數(shù)f(x)=$\left\{\begin{array}{l}{x^2},0≤x≤1\\ 1,1<x≤2\end{array}\right.$則定積分$\int_0^2{f(x)dx}$=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若z=4+3i(i為虛數(shù)單位),則$\frac{\overline{z}}{|z|}$=( 。
A.$\frac{3}{5}$-$\frac{4}{5}$iB.$\frac{3}{5}$+$\frac{4}{5}$iC.$\frac{4}{5}$+$\frac{3}{5}$iD.$\frac{4}{5}$-$\frac{3}{5}$i

查看答案和解析>>

同步練習冊答案