19.若集合A={x|ax2+ax+1=0}中只有一個(gè)元素,則滿足條件的實(shí)數(shù)a構(gòu)成的集合為{4}.

分析 由已知得$\left\{\begin{array}{l}{a≠0}\\{△={a}^{2}-4a=0}\end{array}\right.$,由此能求出滿足條件的實(shí)數(shù)a構(gòu)成的集合.

解答 解:∵集合A={x|ax2+ax+1=0}中只有一個(gè)元素,
∴$\left\{\begin{array}{l}{a≠0}\\{△={a}^{2}-4a=0}\end{array}\right.$,
解得a=4.
∴滿足條件的實(shí)數(shù)a構(gòu)成的集合為{4}.
故答案為:{4}.

點(diǎn)評(píng) 本題考查集合的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意根的判別式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)求函數(shù)$f(x)=x+\sqrt{1-2x}$的值域;
(2)已知$f(x)+2f(\frac{1}{x})=3x-2$,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.請(qǐng)認(rèn)真閱讀下列程序框圖,然后回答問題,其中n0∈N.
(1)若輸入n0=0,寫出所輸出的結(jié)果;
(2)若輸出的結(jié)果中有5,求輸入的自然數(shù)n0的所有可能的值;
(3)若輸出的結(jié)果中,只有三個(gè)自然數(shù),求輸入的自然數(shù)n0的所有可能的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.平面直角坐標(biāo)系中,若點(diǎn)$({a-1\;,\;\;\frac{3a+1}{a-1}})$在第三象限內(nèi),則實(shí)數(shù)a的取值范圍是$(-\frac{1}{3},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知集合A={x||x-2|<a},集合$B=\left\{{x\left|{\frac{2x-1}{x+2}≤1}\right.}\right\}$,且A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知復(fù)數(shù)z=$\frac{\sqrt{3}+i}{(1-\sqrt{3}i)^{2}}$,$\overline{z}$是z的共軛復(fù)數(shù),則z•$\overline{z}$=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{4}$+$\frac{1}{4}$iD.$\frac{\sqrt{3}}{4}$-$\frac{1}{4}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.雙曲線$\frac{x^2}{{{m^2}+12}}-\frac{y^2}{{4-{m^2}}}=1$的焦距是( 。
A.8B.4C.$2\sqrt{2}$D.與m有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若 M={1,2,4,5},N={2,3,4,6},則M∩N=( 。
A.{2,3}B.{2}C.{1,3,4}D.{2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在四棱錐C-ABDE中,F(xiàn)為CD的中點(diǎn),BD⊥平面ABC,BD∥AE且BD=2AE.
(1)求證:EF∥平面ABC;
(2)已知AB=BC=CA=BD=2,求平面ECD與平面ABC所成的角(銳角)的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案