2.i是虛數(shù)單位,則復(fù)數(shù)$\frac{i}{1+i}$的虛部是( 。
A.$\frac{1}{2}$B.$\frac{1}{2}i$C.$-\frac{1}{2}$D.$-\frac{1}{2}i$

分析 利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出.

解答 解:復(fù)數(shù)$\frac{i}{1+i}$=$\frac{i(1-i)}{(1+i)(1-i)}$=$\frac{1}{2}+\frac{1}{2}i$的虛部是$\frac{1}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)$f(x)=\frac{{{m^2}x}}{{{x^2}-m}}$,且m≠0.
(Ⅰ)當(dāng)m=1時(shí),求曲線y=f(x)在點(diǎn)(0,0)處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)f(x)有最值,寫出m的取值范圍.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某校舉行校園達(dá)人秀初賽,共有3名評(píng)委老師參加評(píng)審,某一節(jié)目至少有2名評(píng)委老師同意通過,則該節(jié)目晉級(jí).假如該校高二(1)班共有2名選手參加比賽,其中甲選手獲得每位評(píng)委老師同意通過的概率均為$\frac{1}{2}$,乙選手獲得每位評(píng)委老師同意通過的概率均為$\frac{1}{3}$,各評(píng)委老師評(píng)審的結(jié)果相互獨(dú)立.
(1)分別求甲、乙兩名選手晉級(jí)的概率;
(2)設(shè)高二(1)班甲、乙兩選手的晉級(jí)的人數(shù)為X,試求隨機(jī)變量X的概率分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若球的大圓周長(zhǎng)為4π,則這個(gè)球的表面積為( 。
A.B.16πC.$\frac{8}{3}$πD.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某幾何體的三視圖如圖所示.
(1)畫出該幾何體的直觀圖;
(2)求該幾何體的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知實(shí)數(shù)a,b滿足(a+bi)•(1+i)=4i,其中i是虛數(shù)單位,若z=a+bi-4,則在復(fù)平面內(nèi),復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.解關(guān)于x,y的方程組$\left\{\begin{array}{l}{mx+2y=m+4}\\{2x+my=m}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.用反證法證明:若整系數(shù)一元二次方程ax2+bx+c=0(a≠0)有有理數(shù)根,那么a,b,c中至少有一個(gè)是偶數(shù).用反證法證明時(shí),下列假設(shè)正確的是( 。
A.假設(shè)a,b,c都是偶數(shù)B.假設(shè)a,b,c都不是偶數(shù)
C.假設(shè)a,b,c至多有一個(gè)偶數(shù)D.假設(shè)a,b,c至多有兩個(gè)偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.我們把平面直角坐標(biāo)系中,函數(shù)y=f(x),x∈D上的點(diǎn)P(x,y),滿足x∈N*,y∈N*的點(diǎn)稱為函數(shù)y=f(x)的“正格點(diǎn)”.
(Ⅰ)若函數(shù)f(x)=sinmx,x∈R,m∈(3,4)與函數(shù)g(x)=lgx的圖象有正格點(diǎn)交點(diǎn),求m的值,并寫出兩個(gè)函數(shù)圖象的所有交點(diǎn)個(gè)數(shù).
(Ⅱ)對(duì)于(Ⅰ)中的m值,函數(shù)f(x)=sinmx,$x∈({0,\frac{5}{7}}]$時(shí),不等式logax>sinmx恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案