18.如圖,平行四邊形ABCD中,AE:EB=1:2.
( I)求△AEF與△CDF的周長比;
( II)如果△AEF的面積等于6cm2,求△CDF的面積.

分析 ( I)根據(jù)平行四邊形對邊平行,得到兩個三角形相似,根據(jù)兩個三角形相似,得到△AEF與△CDF的周長比等于對應(yīng)邊長之比,做出兩個三角形的邊長之比,可得△AEF與△CDF的周長比;
( II)利用兩個三角形的面積之比等于邊長之比的平方,利用兩個三角形的邊長之比,根據(jù)△AEF的面積等于6cm2,得到要求的三角形的面積.

解答 解:( I)平行四邊形ABCD中,有△AEF~△CDF,
∴△AEF與△CDF的周長比等于對應(yīng)邊長之比,
∵AE:EB=1:2,
∴AE:CD=1:3,
∴△AEF與△CDF的周長比為1:3;
( II)△AEF與△CDF的面積之比等于對應(yīng)邊長之比的平方,
∵△AEF的面積等于6cm2
∴△CDF的面積等于54cm2

點評 本題考查三角形相似的性質(zhì),兩個三角形相似,對應(yīng)的高線,中線和角平分線之比等于邊長之比,兩個三角形的面積之比等于邊長比的平方,這種性質(zhì)用的比較多.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=lnx+x2-2ax+1(a為常數(shù)).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若存在x0∈(0,1],使得對任意的a∈(-2,0],不等式2mea(a+1)+f(x0)>a2+2a+4(其中e為自然對數(shù)的底數(shù))都成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,E是BC的中點,F(xiàn)是棱CD上的動點,G為C1D1的中點,H為A1G的中點.
( I)當(dāng)點F與點D重合時,求證:EF⊥AH;
( II)設(shè)二面角C1-EF-C的大小為θ,試確定點F的位置,使得sin θ=$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某益智闖關(guān)節(jié)目對前期不同年齡段參賽選手的闖關(guān)情況進行統(tǒng)計,得到如下2×2列聯(lián)表,已知從30~40歲年齡段中隨機選取一人,其恰好闖關(guān)成功的概率為$\frac{5}{9}$.
成功(人)失。ㄈ耍合計
20~30(歲)204060
30~40(歲)50
合計70
(1)完成2×2列聯(lián)表;
(2)有多大把握認為闖關(guān)成功與年齡是否有關(guān)?
附:臨界值表供參考公式
P(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,若△ACD~△ABC,則下列式子中成立的是( 。
A.AC•AD=AB•CDB.AC•BC=AB•ADC.CD2=AD•DBD.AC2=AD•AB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求函數(shù)f(x)=$\frac{1}{xlnx}$的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2x,(x≤-1)}\\{1,(-1<x≤1)}\\{-2x,(x>1)}\end{array}\right.$
(1)求f(x)的定義域、值域:
(2)作出這個函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為2,焦點與橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的焦點相同,那么雙曲線的漸近線方程為y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆甘肅會寧縣一中高三上學(xué)期9月月考數(shù)學(xué)(文)試卷(解析版) 題型:填空題

函數(shù)在區(qū)間[-1,1]上的最大值為________.

查看答案和解析>>

同步練習(xí)冊答案