分析 (1)求出函數(shù)的導(dǎo)函數(shù),對(duì)二次函數(shù)中參數(shù)a進(jìn)行分類討論,判斷函數(shù)的單調(diào)區(qū)間;
(2)根據(jù)(1),得出f(x0)的最大值,問(wèn)題可轉(zhuǎn)化為對(duì)任意的a∈(-2,0],不等式2mea(a+1)-a2+-4a-2>0都成立,構(gòu)造函數(shù)h(a)=2mea(a+1)-a2+-4a-2,根據(jù)題意得出m的范圍,由h(0)>0得m>1,且h(-2)≥0得m≤e2,利用導(dǎo)函數(shù),對(duì)m進(jìn)行區(qū)間內(nèi)討論,求出m的范圍.
解答 解:(I)f(x)=lnx+x2-2ax+1,
f'(x)=$\frac{1}{x}$+2x-2a=$\frac{2{x}^{2}-2ax+1}{x}$,
令g(x)=2x2-2ax+1,
(i)當(dāng)a≤0時(shí),因?yàn)閤>0,所以g(x)>0,函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
(ii)當(dāng)0<a$≤\sqrt{2}$時(shí),因?yàn)椤鳌?,所以g(x)>0,函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
(iii)當(dāng)a>$\sqrt{2}$時(shí),x在($\frac{a-\sqrt{{a}^{2}-2}}{2}$,$\frac{a+\sqrt{{a}^{2}-2}}{2}$)時(shí),g(x)<0,函數(shù)f(x)單調(diào)遞減;
在區(qū)間(0,$\frac{a-\sqrt{{a}^{2}-2}}{2}$)和($\frac{a+\sqrt{{a}^{2}-2}}{2}$,+∞)時(shí),g(x)>0,函數(shù)f(x)單調(diào)遞增;
(II)由(I)知當(dāng)a∈(-2,0],時(shí),函數(shù)f(x)在區(qū)間(0,1]上單調(diào)遞增,
所以當(dāng)x∈(0,1]時(shí),函數(shù)f(x)的最大值是f(1)=2-2a,對(duì)任意的a∈(-2,0],
都存在x0∈(0,1],使得不等式a∈(-2,0],2mea(a+1)+f(x0)>a2+2a+4成立,
等價(jià)于對(duì)任意的a∈(-2,0],不等式2mea(a+1)-a2+-4a-2>0都成立,
記h(a)=2mea(a+1)-a2+-4a-2,由h(0)>0得m>1,且h(-2)≥0得m≤e2,
h'(a)=2(a+2)(mea-1)=0,
∴a=-2或a=-lnm,
∵a∈(-2,0],
∴2(a+2)>0,
①當(dāng)1<m<e2時(shí),-lnm∈(-2,0),且a∈(-2,-lnm)時(shí),h'(a)<0,
a∈(-lnm,0)時(shí),h'(a)>0,所以h(a)最小值為h(-lnm)=lnm-(2-lnm)>0,
所以a∈(-2,-lnm)時(shí),h(a)>0恒成立;
②當(dāng)m=e2時(shí),h'(a)=2(a+2)(ea+2-1),因?yàn)閍∈(-2,0],所以h'(a)>0,
此時(shí)單調(diào)遞增,且h(-2)=0,
所以a∈(-2,0],時(shí),h(a)>0恒成立;
綜上,m的取值范圍是(1,e2].
點(diǎn)評(píng) 考查了導(dǎo)函數(shù)的應(yīng)用和利用構(gòu)造函數(shù)的方法,對(duì)存在問(wèn)題進(jìn)行轉(zhuǎn)化,根據(jù)導(dǎo)函數(shù)解決實(shí)際問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,1] | B. | [0,1] | C. | [1,+∞) | D. | (-∞,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
常喝 | 不常喝 | 合計(jì) | |
肥胖 | 6 | 2 | 8 |
不肥胖 | 4 | 18 | 22 |
合計(jì) | 10 | 20 | 30 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
男 | 女 | 總計(jì) | |
需要幫助 | 40 | m | 70 |
不需要幫助 | n | 270 | s |
總計(jì) | 200 | t | 500 |
y1 | y2 | 總計(jì) | |
x1 | a | b | a+b |
x2 | c | d | c+d |
總計(jì) | a+c | b+d | a+b+c+d |
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com