15.如圖,三棱柱ABC-A1B1C1中,D、M分別為CC1和A1B的中點,A1D⊥CC1,△AA1B是邊長為2的正三角形,A1D=2,BC=1.
(1)證明:MD∥平面ABC;
(2)證明:BC⊥平面ABB1A1
(3)求二面角B-AC-A1的余弦值.

分析 (1)取AB的中點H,連接HM,CH,根據(jù)線面平行的判定定理即可證明MD∥平面ABC;
(2)根據(jù)三角形的邊長關(guān)系證明三角形是直角三角形,然后結(jié)合線面垂直的判定定理即可證明BC⊥平面ABB1A1
(3)建立坐標(biāo)系求出平面的法向量,利用向量法即可求二面角B-AC-A1的余弦值.

解答 (1)證明:取AB的中點H,連接HM,CH,
∵D、M分別為CC1和A1B的中點,
∴HM∥BB1,HM=$\frac{1}{2}$BB1=CD,
∴HM∥CD,HM=CD,
則四邊形CDMH是平行四邊形,
則CH=DM.
∵CH?平面ABC,DM?平面ABC,
∴MD∥平面ABC;
(2)證明:取BB1的中點E,
∵△AA1B是邊長為2的正三角形,A1D=2,BC=1.
∴C1D=1,
∵A1D⊥CC1,
∴A1C1=$\sqrt{{2}^{2}+1}$=$\sqrt{5}$,
則A1B12+A1B12=4+1=5=A1C12
則△A1B1C1是直角三角形,
則B1C1⊥A1B1,
∵在正三角形BA1B1中,A1E=$\sqrt{3}$,
∴A1E2+DE2=3+1=4=A1D12,
則△A1DE是直角三角形,
則DE⊥A1E,
即BC⊥A1E,BC⊥A1B1,
∵A1E∩A1B1=A1,
∴BC⊥平面ABB1A1
(3)建立以E為坐標(biāo)原點,EB,EA1的反向延長線,ED分別為x,y,z軸的空間直角坐標(biāo)系如圖:
則E(0,0,0),B(1,0,0),C(1,0,1),A(2,-$\sqrt{3}$,0),A1(0,-$\sqrt{3}$,0),
則設(shè)平面ABC的法向量為$\overrightarrow{n}$=(x,y,z),
$\overrightarrow{AB}$=(-1,$\sqrt{3}$,0),$\overrightarrow{BC}$=(0,0,1),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=0}\\{\overrightarrow{n}•\overrightarrow{BC}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{-x+\sqrt{3}y=0}\\{z=0}\end{array}\right.$,
令y=1,則x=$\sqrt{3}$,z=0,即$\overrightarrow{n}$=($\sqrt{3}$,1,0),
平面ACA1的法向量為$\overrightarrow{m}$=(x,y,z),
$\overrightarrow{AC}$=(-1,$\sqrt{3}$,1),$\overrightarrow{A{A}_{1}}$=(-2,0,0),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AC}=0}\\{\overrightarrow{m}•\overrightarrow{A{A}_{1}}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{-x+\sqrt{3}y+z=0}\\{-2x=0}\end{array}\right.$,即$\left\{\begin{array}{l}{x=0}\\{z=-\sqrt{3}y}\end{array}\right.$,
令y=1,則z=-$\sqrt{3}$,x=0,即$\overrightarrow{m}$=(0,1,-$\sqrt{3}$),
則cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1×1}{\sqrt{(\sqrt{3})^{2}+1}•\sqrt{(-\sqrt{3})^{2}+1}}$=$\frac{1}{2×2}$=$\frac{1}{4}$,
即二面角B-AC-A1的余弦值是$\frac{1}{4}$.

點評 本題主要考查面面垂直,線面平行的判定以及二面角的求解,建立空間直角坐標(biāo)系,利用向量法進行求解,綜合性較強,運算量較大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知正三棱柱ABC-A1B1C1的三視圖如圖所示.其中左視圖面積為$\frac{\sqrt{3}}{4}$.俯視圖的面積為2.D為AA1上的點.且A1D=$\frac{1}{4}$.其中F為線段AB上的點.
(I)若F為AB的中點,證明:B1D⊥平面A1CF;
(Ⅱ)若二面角A1-CF-A的余弦值為$\frac{\sqrt{17}}{17}$.判斷此時點F的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在數(shù)列{an}中,已知a1<$\frac{3}{2}$,an+1=an2-an+1(n∈N*),且$\frac{1}{{a}_{1}}$$+\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2015}}$=2,則當(dāng)a2016-4a1取得最小值時,a1的值為$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.做一個圓柱形鍋爐,容積為8π,兩個底面的材料每單位面積的價格為2元,側(cè)面的材料每單位面積的價格為4元,當(dāng)造價最低時,鍋爐的底面半徑為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)三角形三邊長為3,4,5,P是三角形內(nèi)的一點,則P到這三角形三邊距離乘積的最大值是$\frac{4}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)長軸兩端點為A、B、P為C上異于頂點的點.滿足AP與BP的斜率之積為-$\frac{1}{2}$.
(1)求橢圓C的離心率;
(2)設(shè)E、F是橢圓C上兩點,線段EF的垂直平分線與x軸交于點G(x0,0),求$\frac{{x}_{0}}{a}$的取值范圍;
(3)設(shè)F1,F(xiàn)2分別是橢圓C的左右焦點,直線PF1與橢圓C交于點P1,直線PF2與橢圓C交于點P2,$\overrightarrow{P{F}_{1}}$=λ1$\overrightarrow{{F}_{1}{P}_{1}}$,$\overrightarrow{P{F}_{2}}$=λ2$\overrightarrow{{F}_{2}{P}_{2}}$,試判斷λ12是否為定值?若是定值,求出該定值并證明;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.判斷y=sinx+tanx的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知定義在R內(nèi)的奇函數(shù)f(x)滿足:對任意x∈R郡有f(x+1)=f(3-x),若f(1)=-2,則2016f(2016)-2015f(2015)=( 。
A.-2015B.2015C.-4030D.4030

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若α∈($\frac{π}{4}$,$\frac{π}{2}$),則sinα,cosα,tanα的大小關(guān)系是( 。
A.sinα>cosα>tanαB.tanα>cosα>sinαC.cosα>tanα>sinαD.tanα>sinα>cosα

查看答案和解析>>

同步練習(xí)冊答案