【題目】已知數(shù)列滿足,且,

1)求證數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;

2)記,求;

3)是否存在實(shí)數(shù)k,使得對任意都成立?若存在,求實(shí)數(shù)k的取值范圍;若不存在,請說明理由.

【答案】1)證明見解析,;(2;(3)存在且

【解析】

1)用等差數(shù)列的定義證明是等差數(shù)列,由可得;

2)用裂項(xiàng)相消法求

3)假設(shè)存在實(shí)數(shù)k,使得對任意都成立,不等式變形為,只要求得的最小值即可,可先證是遞增的,然后可得最小值.

1)因?yàn)?/span>,所以,即,所以,所以是等差數(shù)列,公差為2,

,所以

2)由(1,

所以

3)假設(shè)存在實(shí)數(shù)k,使得對任意都成立,

因?yàn)?/span>,

所以,

不等式化為

,

設(shè),

設(shè),則,,

,所以,所以是遞增數(shù)列,

所以

所以存在實(shí)數(shù)k,使得對任意都成立,且

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下利用斜二測畫法得到的結(jié)論,其中正確的是(

A.相等的角在直觀圖中仍相等B.相等的線段在直觀圖中仍相等

C.平行四邊形的直觀圖是平行四邊形D.菱形的直觀圖是菱形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C過點(diǎn)M0,-2)、N(3,1),且圓心C在直線x+2y+1=0上.

(1)求圓C的方程;

(2)設(shè)直線ax-y+1=0與圓C交于AB兩點(diǎn),是否存在實(shí)數(shù)a,使得過點(diǎn)P(2,0)的直線l垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列的前項(xiàng)和為,,且,,成等差數(shù)列.

(1)的值,并證明為等比數(shù)列;

(2)設(shè),若對任意的,不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形是邊長為2的正方形,,的中點(diǎn),點(diǎn)上,平面,的延長線上,且.

(1)證明:平面.

(2)過點(diǎn)的平行線,與直線相交于點(diǎn),點(diǎn)的中點(diǎn),求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓關(guān)于直線對稱的圓為

(Ⅰ)求圓的方程;

(Ⅱ)過點(diǎn)作直線與圓交于,兩點(diǎn),是坐標(biāo)原點(diǎn),是否存在這樣的直線,使得在平行四邊形為對角線)中?若存在,求出所有滿足條件的直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的最小正周期;

(2)常數(shù),若函數(shù)在區(qū)間上是增函數(shù),求的取值范圍;

(3)若函數(shù)的最大值為2,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求證:上的奇函數(shù);

2)求的值;

3)求證:上單調(diào)遞增,在上單調(diào)遞減;

4)求上的最大值和最小值;

5)直接寫出一個(gè)正整數(shù),滿足

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)(,,)的部分圖象如圖所示.

(1)求函數(shù)的解析式;

(2)求函數(shù)的最小值及取到最小值時(shí)自變量x的集合;

(3)將函數(shù)圖像上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?/span>()倍,得到函數(shù)的圖象.若函數(shù)在區(qū)間上恰有5個(gè)零點(diǎn),求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案