分析 (1)分a=0和a≠0兩種情況討論,對(duì)于后者利用跟的判別式求解即可;
(2)將不等式f(x)<g(x)轉(zhuǎn)化為a<x+1+$\frac{2}{x}$,利用基本不等式解決即可
解答 解:(1)∵f(x)=ax2+x-2,
∴當(dāng)a=0時(shí),由f(x)=x-2=0得,函數(shù)f(x)有零點(diǎn)2,
當(dāng)a≠0時(shí),函數(shù)f(x)有零點(diǎn)等價(jià)于△=1-8a≥0,
即a$≤\frac{1}{8}$且a≠0,
綜上可得,若函數(shù)f(x)有零點(diǎn),求實(shí)數(shù)a的取值范圍是(-∞,$\frac{1}{8}$];
(2)∵f(x)=ax2+x-2(a∈R),g(x)=x3+x2+3x-2,
∴不等式f(x)<g(x)可化為,
ax2<x3+x2+2x…①,
又∵x∈[1,3],
∴①可化為a$<x+1+\frac{2}{x}$,
根據(jù)基本不等式可知,x+1+$\frac{2}{x}$$≥2\sqrt{2}$+1,當(dāng)且僅當(dāng)x=$\sqrt{2}$時(shí)等號(hào)成立,
∴實(shí)數(shù)a的取值范圍是(-∞,2$\sqrt{2}$+1).
點(diǎn)評(píng) 本題考查零點(diǎn)存在性定理,基本不等式的靈活應(yīng)用,屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“同位角相等,兩直線平行”的逆否命題為:“兩直線不平行,同位角不相等” | |
B. | “若實(shí)數(shù)x,y滿足x2+y2=0,則x,y全為0”的否命題為真命題 | |
C. | 若p∧q為假命題,則p、q均為假命題 | |
D. | 對(duì)于命題p:?x0∈R,${x_0}^2+2{x_0}+2≤0$,則?p:?x∈R,x2+2x+2>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -378 | B. | 62 | C. | 72 | D. | 112 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com