【題目】某生物研究者于元旦在湖中放入一些鳳眼蓮,這些鳳眼蓮在湖中的蔓延速度越來越快,二月底測得鳳眼蓮覆蓋面積為24m2 , 三月底測得覆蓋面積為36m2 , 鳳眼蓮覆蓋面積y(單位:m2)與月份x(單位:月)的關系有兩個函數(shù)模型y=kax(k>0,a>1)與y=px +q(p>0)可供選擇. (Ⅰ)試判斷哪個函數(shù)模型更合適,并求出該模型的解析式;
(Ⅱ)求鳳眼蓮覆蓋面積是元旦放入面積10倍以上的最小月份.
(參考數(shù)據(jù):lg2≈0.3010,lg3≈0.4771)
【答案】解:(Ⅰ)兩個函數(shù)y=kax(k>0,a>1), 在(0,+∞)上都是增函數(shù),隨著x的增加,函數(shù)y=kax(k>0,a>1)的值增加的越來越快,而函數(shù) 的值增加的越來越慢.
由于鳳眼蓮在湖中的蔓延速度越來越快,所以函數(shù)模型y=kax(k>0,a>1)適合要求.
由題意可知,x=2時,y=24;x=3時,y=36,所以
解得
所以該函數(shù)模型的解析式是 (x∈N*).
(Ⅱ) x=0時, ,
所以元旦放入鳳眼蓮面積是 ,
由 得 ,
所以 ,
因為 ,所以x≥6,
所以鳳眼蓮覆蓋面積是元旦放入鳳眼蓮面積10倍以上的最小月份是6月份.
【解析】(Ⅰ)判斷兩個函數(shù)y=kax(k>0,a>1), 在(0,+∞)的單調(diào)性,說明函數(shù)模型y=kax(k>0,a>1)適合要求.然后列出方程組,求解即可.(Ⅱ)利用 x=0時, ,元旦放入鳳眼蓮面積是 ,列出不等式轉化求解即可.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線y2=2px(p>0),F(xiàn)為其焦點,l為其準線,過F作一條直線交拋物線于A,B兩點,A′,B′分別為A,B在l上的射線,M為A′B′的中點,給出下列命題: ①A′F⊥B′F;
②AM⊥BM;
③A′F∥BM;
④A′F與AM的交點在y軸上;
⑤AB′與A′B交于原點.
其中真命題的是 . (寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正方體ABCD﹣A1B1C1D1 , O是底ABCD對角線的交點.求證:
(1)C1O∥面AB1D1;
(2)面OC1D∥面AB1D1 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E為棱CC1上的動點.
(1)若E為棱CC1的中點,求證:A1E⊥平面BDE;
(2)試確定E點的位置使直線A1C與平面BDE所成角的正弦值是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C中心在原點,離心率 ,其右焦點是圓E:(x﹣1)2+y2=1的圓心.
(1)求橢圓C的標準方程;
(2)如圖,過橢圓C上且位于y軸左側的一點P作圓E的兩條切線,分別交y軸于點M、N.試推斷是否存在點P,使 ?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設奇函數(shù)f(x)在區(qū)間[﹣7,﹣3]上是減函數(shù)且最大值為﹣5,函數(shù)g(x)= ,其中a< .
(1)判斷并用定義法證明函數(shù)g(x)在(﹣2,+∞)上的單調(diào)性;
(2)求函數(shù)F(x)=f(x)+g(x)在區(qū)間[3,7]上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C的中心在坐標原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,最小值為1.
(1)求橢圓C的標準方程;
(2)若直線l:y=kx+m與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點.求證:直線l過定點,并求出該定點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com