12.若a為實數(shù),命題“任意x∈[0,4],x2-2a-8≤0”為真命題的一個充分不必要條件可以是( 。
A.a≥8B.a<8C.a≥4D.a<4

分析 任意x∈[0,4],x2-2a-8≤0為真命題,可得任意x∈[0,4],2a≥(x2-8)max=8,即可得出.

解答 解:∵任意x∈[0,4],x2-2a-8≤0為真命題,∴任意x∈[0,4],2a≥(x2-8)max=8,∴a≥4.
∴命題“任意x∈[0,4],x2-2a-8≤0”為真命題的一個充分不必要條件可以是a≥8.
故選:A.

點評 本題考查了二次函數(shù)的單調(diào)性、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知關(guān)于x的不等式2x2-2mx+m<0的解集為A,若集合A中恰好有兩個整數(shù),則實數(shù)m的取值范圍是($\frac{8}{3}$,$\frac{18}{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)集合M={y|y=lgx,x>0},N={x|y=lnx,x>0},那么“a∈M”是“a∈N”的(  )
A.充分不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(x)的定義域為[0,2],則g(x)=f(2x+1)+f(3x)的定義域為[0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)I={x|x2≤50,x∈N},M∩L={2,3},$\overline{M}$∩L={1,6},$\overline{M}$∩$\overline{L}$={5},求M和L.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若直線x=$\frac{π}{3}$是函數(shù)f(x)=sin(2x+φ)(其中|φ|<$\frac{π}{2}$)的圖象的一條對稱軸,則φ的值為( 。
A.-$\frac{π}{3}$B.-$\frac{π}{6}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.計算下列各式的值:
(1)cos40°sin80°+sin40°cos80°;
(2)$\frac{tan(60°+α)-tan(30°+α)}{1+tan(60°+α)tan(30°+α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.定義在D上的函數(shù)f(x),若滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界:
(1)設(shè)f(x)=$\frac{x}{x+1}$,判斷f(x)在[-$\frac{1}{2}$,$\frac{1}{2}$]上是否有界函數(shù),若是,請說明理由,并寫出f(x)的所有上界的值的集合,若不是,也請說明理由;
(2)若函數(shù)g(x)=1+a•($\frac{1}{2}$)x+($\frac{1}{4}$)x在[0,+∞)上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(x)=2x-$\frac{1}{x}$-alnx(a∈R).
(1)當(dāng)a=3時,求f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=f(x)-x+2alnx,且g(x)有兩個極值點,其中x1∈[0,1],求g(x1)-g(x2)的最小值.

查看答案和解析>>

同步練習(xí)冊答案