【題目】某公司對員工實行新的臨時事假制度:“每位員工每月在正常的工作時間臨時有事,可請假至多三次,每次至多一小時”,現(xiàn)對該制度實施以來名員工請假的次數(shù)進行調查統(tǒng)計,結果如下表所示:

請假次數(shù)

人數(shù)

根據(jù)上表信息解答以下問題:

(1)從該公司任選兩名員工,求這兩人請假次數(shù)之和恰為的概率;

(2)從該公司任選兩名員工,用表示這兩人請假次數(shù)之差的絕對值,求隨機變量的分布列及數(shù)學期望.

【答案】(1);(2)詳見解析.

【解析】

1)可將請假次數(shù)和為分為兩種情況,分別計算出兩種情況下的選法種數(shù),利用古典概型求得結果;(2)確定所有可能的取值,分別計算每個取值對應的概率,從而得到分布列;再利用數(shù)學期望計算公式求得期望.

(1)兩名員工請假次數(shù)之和為兩種情況

請假次數(shù)為共有:種選法

請假次數(shù)為共有:種選法

則請假次數(shù)之和為的概率

(2)由題意可知:所有可能的取值分別是

;;

;

的分布列如下:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】棉花的纖維長度是棉花質量的重要指標,在一批棉花中隨機抽測了60根棉花的纖維長度(單位:mm),按從小到大排序結果如下:

25 28 33 50 52 58 59 60 61 62

82 86 113 115 140 143 146 170 175 195

202 206 233 236 238 255 260 263 264 265

293 293 294 296 301 302 303 305 305 306

321 323 325 326 328 340 343 346 348 350

352 355 357 357 358 360 370 380 383 385

1)請你選擇合適的組距,作出這個樣本的頻率分布直方圖,分析這批棉花纖維長度分布的特征;

2)請你估計這批棉花的第5,95百分位數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)fx=3ax22a+cx+ca0,acR

1)設ac0,若fx)>c22c+ax[1,+∞]恒成立,求c的取值范圍;

2)函數(shù)fx)在區(qū)間(0,1)內是否有零點,有幾個零點?為什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】喜羊羊家族的四位成員與灰太狼、紅太狼進行談判,通過談判他們握手言和,準備一起照合影像(排成一排).

(1)要求喜羊羊家族的四位成員必須相鄰,有多少種排法?

(2)要求灰太狼、紅太狼不相鄰,有多少種排法?

(3)記灰太狼和紅太狼之間的喜羊羊家族的成員個數(shù)為,求的概率分布表和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖設計一幅矩形宣傳畫,要求畫面面積為4840,畫面上下邊要留8cm空白,左右要留5cm空白,怎樣確定畫面高與寬的尺寸,才能使宣傳畫所用紙張面積最。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】利用節(jié)中100戶居民用戶的月均用水量的調查數(shù)據(jù),計算樣本數(shù)據(jù)的平均數(shù)和中位數(shù),并據(jù)此估計全市居民用戶月均用水量的平均數(shù)和中位數(shù).

9.0 13.6 14.9 5.9 4.0 7.1 6.4 5.4 19.4 2.0

2.2 8.6 13.8 5.4 10.2 4.9 6.8 14.0 2. 0 10.5

2.1 5.7 5.1 16.8 6.0 11.1 1.3 11.2 7.7 4.9

2.3 10.0 16.7 12.0 12.4 7.8 5.2 13.6 2.6 22.4

3.6 7.1 8.8 25.6 3.2 18.3 5.1 2.0 3.0 12.0

22.2 10.8 5.5 2.0 24.3 9.9 3.6 5.6 4.4 7.9

5.1 24.5 6.4 7.5 4.7 20.5 5.5 15.7 2.6 5.7

5.5 6.0 16.0 2.4 9.5 3.7 17.0 3.8 4.1 2.3

5.3 7.8 8.1 4.3 13.3 6.8 1.3 7.0 4.9 1.8

7.1 28.0 10.2 13.8 17.9 10.1 5.5 4.6 3.2 21.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【選修4-5:不等式選講】

已知函數(shù)

(Ⅰ)求不等式

(Ⅱ)若的圖像與直線圍成圖形的面積不小于14,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在長方形中,的中點,為線段上一動點.現(xiàn)將沿折起,形成四棱錐.

(1)若重合,且(如圖2).證明:平面;

(2)若不與重合,且平面平面 (如圖3),設,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點在以為焦點的雙曲線上,過軸的垂線,垂足為,若四邊形為菱形,則該雙曲線的離心率為( )

A. B. 2 C. D.

查看答案和解析>>

同步練習冊答案