【題目】如圖,點(diǎn)在以為焦點(diǎn)的雙曲線上,過(guò)軸的垂線,垂足為,若四邊形為菱形,則該雙曲線的離心率為( )

A. B. 2 C. D.

【答案】C

【解析】

連接,可得三角形為等邊三角形,過(guò)點(diǎn)PPHx軸于點(diǎn)H, 則∠=60,可得|=2c, , ||=, ||=,連接,利用雙曲線的性質(zhì), 2a=||-||=-2c=,可得離心率e.

解:由題意得:

四邊形的邊長(zhǎng)為2c, 連接,由對(duì)稱(chēng)性可知, ||=||=2c,則三角形為等邊三角形.

過(guò)點(diǎn)PPHx軸于點(diǎn)H, 則∠=60,

||=2c,在直角三角形, ||=, ||=,

P(2c,), 連接, ||=.

由雙曲線的定義知,2a=||-||=-2c=,

所以雙曲線的離心率為e===

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為評(píng)估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線上隨機(jī)抽取100件零件作為樣本,測(cè)量其直徑后,整理得到下表:

直徑

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合計(jì)

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值,用樣本估計(jì)總體.

(1)將直徑小于等于或直徑大于的零件認(rèn)為是次品,從設(shè)備的生產(chǎn)流水線上隨意抽取3個(gè)零件,計(jì)算其中次品個(gè)數(shù)的數(shù)學(xué)期望;

(2)為評(píng)判一臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行評(píng)判(表示相應(yīng)事件的概率):①;②;③.評(píng)判規(guī)則為:若同時(shí)滿足上述三個(gè)不等式,則設(shè)備等級(jí)為甲;僅滿足其中兩個(gè),則等級(jí)為乙;若僅滿足其中一個(gè),則等級(jí)為丙;若全部不滿足,則等級(jí)為丁,試判斷設(shè)備的性能等級(jí)并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)xR

1)判斷函數(shù)的奇偶性,并說(shuō)明理由;

2)利用函數(shù)單調(diào)性定義證明:上是增函數(shù);

3)若對(duì)任意的xR,任意的 恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,已知圓的圓心為,半徑為.以極點(diǎn)為原點(diǎn),極軸方向?yàn)?/span>軸正半軸方向,利用相同單位長(zhǎng)度建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù),).

(Ⅰ)寫(xiě)出圓的極坐標(biāo)方程和直線的普通方程;

(Ⅱ)若直線與圓交于、兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】要得到函數(shù)的圖象,只要將函數(shù)的圖象( )

A.每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的(縱坐標(biāo)不變),再將所得圖象向左平移個(gè)長(zhǎng)度

B.每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的(縱坐標(biāo)不變),再將所得圖象向左平移個(gè)長(zhǎng)度

C.向左平移個(gè)長(zhǎng)度,再將所得圖象每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的(縱坐標(biāo)不變)

D.向左平移個(gè)長(zhǎng)度,再將所得圖象每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的(縱坐標(biāo)不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,平面,且,,點(diǎn)為線段的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求證:;

(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,,直線為參數(shù),).

(Ⅰ)求直線的普通方程;

(Ⅱ)在曲線上求一點(diǎn),使它到直線的距離最短,并求出點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,T是由A的子集組成的集合,滿足性質(zhì):空集和屬于,且任意兩個(gè)元素的交和并也屬于T,

(1)當(dāng)T的元素個(gè)數(shù)為2時(shí),請(qǐng)寫(xiě)出所有符合條件的T.

(2)當(dāng)T的元素個(gè)數(shù)為3時(shí),請(qǐng)寫(xiě)出所有符合條件的T.

(3)求所有符合條件的T的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓C:(a>b>0)的左、右焦點(diǎn)分別為,離心率為,過(guò)焦點(diǎn)且垂直于x軸的直線被橢圓C截得的線段長(zhǎng)為1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知點(diǎn)M(0,-1),直線l經(jīng)過(guò)點(diǎn)N(2,1)且與橢圓C相交于A,B兩點(diǎn)(異于點(diǎn)M),記直線MA的斜率為,直線MB的斜率為,證明 為定值,并求出該定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案