【題目】某市為了宣傳環(huán)保知識,舉辦了一次“環(huán)保知識知多少”的問卷調(diào)查活動(一

人答一份).現(xiàn)從回收的年齡在20~60歲的問卷中隨機(jī)抽取了100份,統(tǒng)計(jì)結(jié)果如下面的圖表所示.

年齡

分組

抽取份數(shù)

答對全卷

的人數(shù)

答對全卷的人數(shù)

占本組的概率

[20,30)

40

28

0.7

[30,40)

27

0.9

[40,50)

10

4

[50,60]

20

0.1

(1)分別求出, , , 的值;

(2)從年齡在答對全卷的人中隨機(jī)抽取2人授予“環(huán)保之星”,求年齡在的人中至少有1人被授予“環(huán)保之星”的概率.

【答案】(1, , , ;(2

【解析】試題分析:(1)由抽取總問卷為100份可得的值,由抽取份數(shù)為10份,答對全卷人數(shù)為4人可得的值,由抽取份數(shù)為20份,答對全卷的人數(shù)占本組的概率為可得的值,由頻率分布直方圖中,各頻率之和等于1可得的值;(2)利用列舉法寫出抽取2人授予環(huán)保之星的所有基本事件,并從中找出年齡在的人中至少有1人被授予環(huán)保之星的基本事件,利用古典概型公式求出概率.

試題解析:(1)因?yàn)槌槿】倖柧頌?/span>100份,所以1

年齡在中,抽取份數(shù)為10份,答對全卷人數(shù)為4人,所以2

年齡在中,抽取份數(shù)為20份,答對全卷的人數(shù)占本組的概率為,

所以,解得3

根據(jù)頻率直方分布圖,得,

解得4

2)因?yàn)槟挲g在中答對全卷的人數(shù)分別為4人與2人.

年齡在中答對全卷的4人記為, , , ,年齡在中答對全卷的2人記為, ,則從這6人中隨機(jī)抽取2人授予環(huán)保之星獎的所有可能的情況是: , , , , , , , , , 15種. 8

其中所抽取年齡在的人中至少有1人被授予環(huán)保之星的情況是: , , , , , , , 9種. 11

故所求的概率為12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)在處的切線與直線平行,則實(shí)數(shù)____;

當(dāng)a≤0時,若方程有且只有一個實(shí)根,則實(shí)數(shù)的取值范圍為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解甲、乙兩廠產(chǎn)品的質(zhì)量,從兩廠生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取各10件樣品,測量產(chǎn)品中某種元素的含量(單位:毫克),如圖是測量數(shù)據(jù)的莖葉圖:

規(guī)定:當(dāng)產(chǎn)品中的此種元素含量不小于16毫克時,該產(chǎn)品為優(yōu)等品.

(1)從乙廠抽出的上述10件樣品中,隨機(jī)抽取3件,求抽到的3件樣品中優(yōu)等品數(shù)的分布列及其數(shù)學(xué)期望;

(2)從甲廠的10件樣品中有放回地逐個隨機(jī)抽取3件,也從乙廠的10件樣品中有放回地逐個隨機(jī)抽取3件,求抽到的優(yōu)等品數(shù)甲廠恰比乙廠多2件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線的方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為).

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)曲線上有3個點(diǎn)到曲線的距離等于1,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】423日是世界讀書日,惠州市某中學(xué)在此期間開展了一系列的讀書教育活動。為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對其課外閱讀時間進(jìn)行調(diào)查。下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,且將日均課外閱讀時間不低于60分鐘的學(xué)生稱為讀書迷,低于60分鐘的學(xué)生稱為非讀書迷

)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為讀書迷與性別有關(guān)?

)將頻率視為概率,現(xiàn)在從該校大量學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中讀書迷的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、數(shù)學(xué)期望和方差

附:


0.100

0.050

0.025

0.010

0.001


2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

1)求的值;

2)判斷函數(shù)的單調(diào)性并證明;

3)若對任意的,不等式恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“累積凈化量”是空氣凈化器質(zhì)量的一個重要衡量指標(biāo),它是指空氣凈化從開始使用到凈化效率為50%時對顆粒物的累積凈化量,以克表示,根據(jù)《空氣凈化器》國家標(biāo)準(zhǔn),對空氣凈化器的累計(jì)凈化量有如下等級劃分:

累積凈化量(克)

12以上

等級

為了了解一批空氣凈化器(共5000臺)的質(zhì)量,隨機(jī)抽取臺機(jī)器作為樣本進(jìn)行估計(jì),已知這臺機(jī)器的累積凈化量都分布在區(qū)間中,按照、、、均勻分組,其中累積凈化量在的所有數(shù)據(jù)有:4.5,4.6,5.2,5.3,5.7和5.9,并繪制了頻率分布直方圖,如圖所示:

(1)求的值及頻率分布直方圖中的值;

(2)以樣本估計(jì)總體,試估計(jì)這批空氣凈化器(共5000臺)中等級為的空氣凈化器有多少臺?

(3)從累積凈化量在的樣本中隨機(jī)抽取2臺,求恰好有1臺等級為的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:

(Ⅰ)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;

(Ⅱ)能否有的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?

(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,能否提供更好的調(diào)查方法來估計(jì)該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說明理由.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知城和城相距,現(xiàn)計(jì)劃以為直徑的半圓上選擇一點(diǎn)(不與點(diǎn) 重合)建造垃圾處理廠.垃圾處理廠對城市的影響度與所選地點(diǎn)到城市的距離有關(guān),對城和城的總影響度為對城與城的影響度之和.記點(diǎn)到的距離為,建在處的垃圾處理廠對城和城的總影響度為.統(tǒng)計(jì)調(diào)查表明:垃圾處理廠對城的影響度與所選地點(diǎn)到城的距離的平方成反比例關(guān)系,比例系數(shù)為4;對城的影響度與所選地點(diǎn)到城的距離的平方成反比例關(guān)系,比例系數(shù)為.當(dāng)垃圾處理廠建在的中點(diǎn)時,對城和城的總影響度為0.065.

(1)將表示成的函數(shù).

(2)討論(1)中函數(shù)的單調(diào)性,并判斷在上是否存在一點(diǎn),使建在此處的垃圾處理廠對城和城的總影響度最。咳舸嬖,求出該點(diǎn)到城的距離;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案