【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
(Ⅰ)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(Ⅱ)能否有的把握認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關?
(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,能否提供更好的調(diào)查方法來估計該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說明理由.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【答案】(1) ;(2) 有的把握認為該地區(qū)的老年人是否需要幫助與性別有關;(3)采用分層抽樣方法比采用簡單隨機抽樣方法更好.
【解析】試題分析:(1)由樣本的頻率估計總體的概率;(2)根據(jù)公式求的值,對比臨界值可得結(jié)論;(3)由(2)的結(jié)論知,該地區(qū)老年人是否需要幫助與性別有關,并且從樣本數(shù)據(jù)能看出該地區(qū)男性老年人與女性老年人中需要幫助的比例有明顯差異,因此在調(diào)查時可按性別分層抽樣.
試題解析:(Ⅰ)調(diào)查的500位老年人中有70位需要志愿者提供幫助,因此該地區(qū)老年人中,需要幫助的老年人的比例的估算值為;
(Ⅱ),由于.
所以有的把握認為該地區(qū)的老年人是否需要幫助與性別有關;
(Ⅲ)由(Ⅱ)的結(jié)論知,該地區(qū)老年人是否需要幫助與性別有關,并且從樣本數(shù)據(jù)能看出該地區(qū)男性老年人與女性老年人中需要幫助的比例有明顯差異,因此在調(diào)查時,先確定該地區(qū)老年人中男、女的比例,再把老年人分成男、女兩層并采用分層抽樣方法比采用簡單隨機抽樣方法更好.
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)某市地產(chǎn)數(shù)據(jù)研究的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價走勢如下圖所示,為抑制房價過快上漲,政府從8月采取宏觀調(diào)控措施,10月份開始房價得到很好的抑制.
(1)地產(chǎn)數(shù)據(jù)研究院發(fā)現(xiàn),3月至7月的各月均價(萬元/平方米)與月份之間具有較強的線性相關關系,試建立關于的回歸方程(系數(shù)精確到0.01);政府若不調(diào)控,依此相關關系預測第12月份該市新建住宅銷售均價;
(2)地產(chǎn)數(shù)據(jù)研究院在2016年的12個月份中,隨機抽取三個月的數(shù)據(jù)作樣本分析,若關注所抽三個月份的所屬季度,記不同季度的個數(shù)為,求的分布列和數(shù)學期望.
參考數(shù)據(jù): , , ;
回歸方程中斜率和截距的最小二乘法估計公式分別為:
, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市為了宣傳環(huán)保知識,舉辦了一次“環(huán)保知識知多少”的問卷調(diào)查活動(一
人答一份).現(xiàn)從回收的年齡在20~60歲的問卷中隨機抽取了100份,統(tǒng)計結(jié)果如下面的圖表所示.
年齡 分組 | 抽取份數(shù) | 答對全卷 的人數(shù) | 答對全卷的人數(shù) 占本組的概率 |
[20,30) | 40 | 28 | 0.7 |
[30,40) | 27 | 0.9 | |
[40,50) | 10 | 4 | |
[50,60] | 20 | 0.1 |
(1)分別求出, , , 的值;
(2)從年齡在答對全卷的人中隨機抽取2人授予“環(huán)保之星”,求年齡在的人中至少有1人被授予“環(huán)保之星”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸,與直角坐標系取相同的單位長度建立極坐標系,曲線的極坐標方程為.
(1)化曲線的方程為普通方程,并說明它們分別表示什么曲線;
(2)設曲線與軸的一個交點的坐標為,經(jīng)過點作斜率為1的直線, 交曲線于兩點,求線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),函數(shù).
(1)求函數(shù)的值域;
(2)若對于任意的,總存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線的頂點在坐標原點,焦點在軸上,過點的直線交拋物線于兩點,線段的長度為8, 的中點到軸的距離為3.
(1)求拋物線的標準方程;
(2)設直線在軸上的截距為6,且拋物線交于兩點,連結(jié)并延長交拋物線的準線于點,當直線恰與拋物線相切時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從5名男生和4名女生中選出4人去參加座談會,問:
(1)如果4人中男生和女生各選2人,有多少種選法?
(2)如果男生中的甲與女生中的乙至少要有1人在內(nèi),有多少種選法?
(3)如果4人中必須既有男生又有女生,有多少種選法?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)設.
①若,曲線在處的切線過點,求的值;
②若,求在區(qū)間上的最大值.
(2)設在, 兩處取得極值,求證: , 不同時成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦點在軸上,且橢圓的焦距為2.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點的直線與橢圓交于兩點,過作軸且與橢圓交于另一點, 為橢圓的右焦點,求證:三點在同一條直線上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com