【題目】如圖,在四棱錐中,平面底面,其中底面為等腰梯形,,,,,為的中點(diǎn).
(1)證明:平面;
(2)求二面角的余弦值.
【答案】(1)證明見解析(2)
【解析】
(1)取中點(diǎn),連結(jié),推導(dǎo)出為平行四邊形,從而,由此能證明平面.
(2)取中點(diǎn),連結(jié),取的中點(diǎn),連結(jié),推導(dǎo)出,,從而平面,以為坐標(biāo)原點(diǎn),分別以所在直線為軸,軸,軸,建立空間直角坐標(biāo)系,利用向量法求二面角的余弦值.
解:(1)取中點(diǎn),連結(jié),.
∵,是,的中點(diǎn),
∴,且.
∵,,
∴,
∴,
∴,又,
∴,
∴為平行四邊形,
∴.
又平面,且平面,
∴平面;
(2)取中點(diǎn),連接,取的中點(diǎn),連接,.設(shè),
由(1)得,
∴為等邊三角形,
∴,同理∴,
∵平面平面,平面平面,平面,
∴平面.
以為坐標(biāo)原點(diǎn),分別以,,所在直線為軸,軸,軸建立空間直角坐標(biāo)系,
則,,,,,,
設(shè)平面的法向量,則,∴,
取,得,
又平面的法向量,
∴,
由圖得二面角的平面角為鈍角,
所以,二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三棱柱中,,、分別是、的中點(diǎn).
(1)求證:平面;
(2)若平面,,,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2014年12月19日,2014年中國(guó)數(shù)學(xué)奧林匹克競(jìng)賽(第30屆全國(guó)中學(xué)生數(shù)學(xué)冬令營(yíng))在重慶市巴蜀中學(xué)舉行.參加本屆中國(guó)數(shù)學(xué)奧林匹克競(jìng)賽共有來自各省、市(自治區(qū)、直轄市)、香港地區(qū)、澳門地區(qū),以及俄羅斯、新加坡等國(guó)的30余支代表隊(duì),共317名選手.競(jìng)賽為期2天,每天3道題,限時(shí)4個(gè)半小時(shí)完成.部分優(yōu)勝者將參加為國(guó)際數(shù)學(xué)奧林匹克競(jìng)賽而組建的中國(guó)國(guó)家集訓(xùn)隊(duì).中國(guó)數(shù)學(xué)奧林匹克競(jìng)賽(全國(guó)中學(xué)生數(shù)學(xué)冬令營(yíng))是在全國(guó)高中數(shù)學(xué)聯(lián)賽基礎(chǔ)上進(jìn)行的一次較高層次的數(shù)學(xué)競(jìng)賽,該項(xiàng)活動(dòng)也是中國(guó)中學(xué)生級(jí)別最高、規(guī)模最大、最有影響的全國(guó)性數(shù)學(xué)競(jìng)賽.2020年第29屆全國(guó)中學(xué)生生物學(xué)競(jìng)賽也將在重慶巴蜀中學(xué)舉行.巴蜀中學(xué)校本選修課“數(shù)學(xué)建!迸d趣小組調(diào)查了2019年參加全國(guó)生物競(jìng)賽的200名學(xué)生(其中男生、女生各100人)的成績(jī),得到這200名學(xué)生成績(jī)的中位數(shù)為78.這200名學(xué)生成績(jī)均在50與110之間,且成績(jī)?cè)?/span>內(nèi)的人數(shù)為30,這200名學(xué)生成績(jī)的高于平均數(shù)的男生有62名,女生有38名.并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖.
(1)求,的值;
(2)填寫下表,能否有的把握認(rèn)為學(xué)生成績(jī)是否高于平均數(shù)與性別有關(guān)系?
男生 | 女生 | 總計(jì) | |
成績(jī)不高于平均數(shù) | |||
成績(jī)高于平均數(shù) | |||
總計(jì) |
參考公式及數(shù)據(jù):,其中.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且此拋物線的準(zhǔn)線被橢圓截得的弦長(zhǎng)為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線交橢圓于、兩點(diǎn),線段的中點(diǎn)為,直線是線段的垂直平分線,試問直線是否過定點(diǎn)?若是,請(qǐng)求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是橢圓上的點(diǎn),,是焦點(diǎn),離心率.
(1)求橢圓的方程;
(2)設(shè),是橢圓上的兩點(diǎn),且,(是定數(shù)),問線段的垂直平分線是否過定點(diǎn)?若過定點(diǎn),求出此定點(diǎn)的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)內(nèi)角的對(duì)邊分別為,若,,,且,試求角和角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究機(jī)構(gòu)為了解某學(xué)校學(xué)生使用手機(jī)的情況,在該校隨機(jī)抽取了60名學(xué)生(其中男、女生人數(shù)之比為2:1)進(jìn)行問卷調(diào)查.進(jìn)行統(tǒng)計(jì)后將這60名學(xué)生按男、女分為兩組,再將每組學(xué)生每天使用手機(jī)的時(shí)間(單位:分鐘)分為5組,得到如圖所示的頻率分布直方圖(所抽取的學(xué)生每天使用手機(jī)的時(shí)間均不超過50分鐘).
(1)求出女生組頻率分布直方圖中的值;
(2)求抽取的60名學(xué)生中每天使用手機(jī)時(shí)間不少于30分鐘的學(xué)生人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com