分析 設(shè)AB=AC=2x,使用余弦定理求出cosA,得出sinA,最后根據(jù)三角形面積公式表示出三角形面積的表達(dá)式,根據(jù)一元二次函數(shù)的性質(zhì)求得面積的最大值.
解答 解設(shè)AB=AC=2x,則AM=$\sqrt{3}x$.
在△ABM中,由余弦定理得cosA=$\frac{A{B}^{2}+A{M}^{2}-B{M}^{2}}{2AB•AM}$=$\frac{7{x}^{2}-1}{4\sqrt{3}{x}^{2}}$.
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{-{x}^{4}+14{x}^{2}-1}}{4\sqrt{3}{x}^{2}}$.
∴S△ABC=$\frac{1}{2}AB•AC•sinA$=$\frac{1}{2}×2x×2x×$$\frac{\sqrt{-{x}^{4}+14{x}^{2}-1}}{4\sqrt{3}{x}^{2}}$=$\frac{\sqrt{-({x}^{2}-7)^{2}+48}}{2\sqrt{3}}$.
∴當(dāng)x2=7時,S△ABC取得最大值$\frac{\sqrt{48}}{2\sqrt{3}}$=2.
故答案為:2.
點(diǎn)評 本題主要考查函數(shù)最值的應(yīng)用,根據(jù)條件設(shè)出變量,根據(jù)三角形的面積公式以及三角函數(shù)的關(guān)系是解決本題的關(guān)鍵,利用二次函數(shù)的性質(zhì)即可求出函數(shù)的最值,考查學(xué)生的運(yùn)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{a}-\overrightarrow$ | B. | $\overrightarrow{a}+\overrightarrow$ | C. | $\overrightarrow-\overrightarrow{a}$ | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 點(diǎn)P在△ABC外,且△APC的面積為$\frac{1}{3}$S | B. | 點(diǎn)P在△ABC外,且△APC的面積為$\frac{1}{2}$S | ||
C. | 點(diǎn)P在△ABC內(nèi),且△APC的面積為$\frac{1}{3}$S | D. | 點(diǎn)P在△ABC內(nèi),且△APC的面積為$\frac{1}{2}$S |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+i | B. | 1-i | C. | $\frac{1+i}{2}$ | D. | $\frac{1-i}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com