13.若x、y滿足約束條件$\left\{\begin{array}{l}x+y≥1\\ y≤x\\ x≥1\end{array}\right.$,則$\frac{y+1}{x-1}$的取值范圍為(-1,+∞).

分析 作出不等式組對應(yīng)的平面區(qū)域,利用直線斜率的幾何意義進行求解即可.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
$\frac{y+1}{x-1}$的幾何意義是區(qū)域內(nèi)的點到定點D(1,-1)的斜率,
由圖象知當過D的直線和直線BC平行時,直線的斜率k=-1,
則$\frac{y+1}{x-1}$的取值范圍為k>-1,
故答案為:(-1,+∞).

點評 本題主要考查線性規(guī)劃的應(yīng)用,結(jié)合直線的斜率的幾何意義以及利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若集合A={x|-4<x<3},B={x|x<cos5π},則A∩B等于( 。
A.(-4,0)B.(-4,-1)C.(-4,1)D.(-3,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.點P是棱長為1的正方體ABCD-A1B1C1D1的底面A1B1C1D1上一點,則$\overrightarrow{PA}•\overrightarrow{P{C_1}}$的取值范圍是[-$\frac{1}{2}$,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)z的共軛復(fù)數(shù)是$\overline z$,若z+$\overline z=4,z•\overline z=8,則\frac{z}{\overline z}$=( 。
A.iB.-iC.±1D.±i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)是定義在R上的偶函數(shù),現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象(二次函數(shù)圖象的一部分),如圖所示,請根據(jù)圖象:
(1)畫出函數(shù)f(x)在y軸右邊的圖象并寫出函數(shù)f(x)(x∈R)的解析式.
(2)若函數(shù)g(x)=f(x)-2ax+2,(x∈[1,2])(a∈R為常數(shù)),求函數(shù)g(x)的最小值及最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)函數(shù)f(2x)的定義域為(1,2),求f($\sqrt{{x}^{2}-1}$)的定義域(-$\sqrt{17}$,-$\sqrt{5}$)∪($\sqrt{5}$,$\sqrt{17}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.等比數(shù)列{an}中,若a4a5=1,a8a9=16,則公比q等于(  )
A.$\sqrt{2}$B.2C.-2D.$±\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某產(chǎn)品在某銷售點的零售價x(單位:元)與每天的銷售量y(單位:個)的統(tǒng)計數(shù)據(jù)如表所示:
x16171819
y50344131
由表可得回歸直線方程$\widehaty=\widehatbx+\widehata$中的$\widehatb=-5$,根據(jù)模型預(yù)測零售價為20元時,每天的銷售量約為( 。
A.30B.29C.27.5D.26.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=mlnx-cosx在x=1處取到極值,則m的值為(  )
A.sin1B.-sin1C.cos1D.-cos1

查看答案和解析>>

同步練習(xí)冊答案