(本小題14分).已知橢圓離心率,焦點到橢圓上
的點的最短距離為。
(1)求橢圓的標準方程。
(2)設(shè)直線與橢圓交與M,N兩點,當時,求直線的方程。
解:(1)由已知得,

橢圓的標準方程為6分
(2)設(shè)
,8分
          10分
直線方程為14分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

P為橢圓=1上任意一點,F1、F2為左、右焦點,如圖所示.
(1)若PF1的中點為M,求證:|MO|=5-|PF1|;
(2)若∠F1PF2=60°,求|PF1|·|PF2|之值;
(3)橢圓上是否存在點P,使·=0,若存在,求出P點的坐標, 若不存在,試說明理由

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分) 在直角坐標系中,點到點,的距離之和是,點的軌跡是,直線與軌跡交于不同的兩點.⑴求軌跡的方程;⑵是否存在常數(shù),?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知焦點在軸上,中心在坐標原點的橢圓C的離心率為,且過點(題干自編)
(I)求橢圓C的方程;
(II)直線分別切橢圓C與圓(其中)于兩點,求的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓)和橢圓:   
)的焦點相同且.給出如下四個結(jié)論:
①橢圓和橢圓一定沒有公共點;          ②;
;                     ④.
其中,所有正確結(jié)論的序號是(   )
A.②③④B.①③④C.①②④D.①②③

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知為坐標原點,為橢圓軸正半軸上的焦點,過且斜率為的直線交與、兩點,點滿足

(Ⅰ)小題1:證明:點上;
(Ⅱ)小題2:設(shè)點關(guān)于點的對稱點為,證明:、、、四點在同一圓上。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)橢圓的焦點分別為、,拋物線:的準線與軸的交點為,且
(I)求的值及橢圓的方程;
(II)過、分別作互相垂直的兩直線與橢圓分別交于、、四點(如圖),
求四邊形面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓),其焦距為,若),則稱橢圓為“黃金橢圓”.
(1)求證:在黃金橢圓)中,、成等比數(shù)列.
(2)黃金橢圓)的右焦點為,為橢圓上的
任意一點.是否存在過點、的直線,使軸的交點滿足?若存在,求直線的斜率;若不存在,請說明理由.
(3)在黃金橢圓中有真命題:已知黃金橢圓)的左、右焦點分別是、,以、、、為頂點的菱形的內(nèi)切圓過焦點.試寫出“黃金雙曲線”的定義;對于上述命題,在黃金雙曲線中寫出相關(guān)的真命題,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

雙曲線與橢圓有共同的焦點,點
是雙曲線的漸近線與橢圓的一個交點,求橢圓與雙曲線的標準方程。

查看答案和解析>>

同步練習冊答案