已知橢圓),其焦距為,若),則稱橢圓為“黃金橢圓”.
(1)求證:在黃金橢圓)中,、成等比數(shù)列.
(2)黃金橢圓)的右焦點(diǎn)為,為橢圓上的
任意一點(diǎn).是否存在過(guò)點(diǎn)、的直線,使軸的交點(diǎn)滿足?若存在,求直線的斜率;若不存在,請(qǐng)說(shuō)明理由.
(3)在黃金橢圓中有真命題:已知黃金橢圓)的左、右焦點(diǎn)分別是、,以、、、為頂點(diǎn)的菱形的內(nèi)切圓過(guò)焦點(diǎn)、.試寫出“黃金雙曲線”的定義;對(duì)于上述命題,在黃金雙曲線中寫出相關(guān)的真命題,并加以證明.
 (1)證明:由,得
,故、、成等比數(shù)列.(3分)
(2)解:由題設(shè),顯然直線垂直于軸時(shí)不合題意,設(shè)直線的方程為
,又,及,得點(diǎn)的坐標(biāo)為,(5分)
因?yàn)辄c(diǎn)在橢圓上,所以,又,得,
,故存在滿足題意的直線,其斜率.(6分)
(3)黃金雙曲線的定義:已知雙曲線,其焦距為,若(或?qū)懗?img src="http://thumb.1010pic.com/pic2/upload/papers/20140823/20140823181958638467.gif" style="vertical-align:middle;" />),則稱雙曲線為“黃金雙曲線”.(8分)
在黃金雙曲線中有真命題:已知黃金雙曲線的左、右焦點(diǎn)分別是、,以、、、為頂點(diǎn)的菱形的內(nèi)切圓過(guò)頂點(diǎn).(10分)
證明:直線的方程為,原點(diǎn)到該直線的距離為
代入,得,又將代入,化簡(jiǎn)得,
故直線與圓相切,同理可證直線、、均與圓相切,即以、為直徑的圓為菱形的內(nèi)切圓,命題得證.(13分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
橢圓過(guò)點(diǎn)P,且離心率為,F(xiàn)為橢圓的右焦點(diǎn),兩點(diǎn)在橢圓上,且 ,定點(diǎn)(-4,0).

(Ⅰ)求橢圓C的方程;
(Ⅱ)當(dāng)時(shí) ,問:MN與AF是否垂直;并證明你的結(jié)論.
(Ⅲ)當(dāng)、兩點(diǎn)在上運(yùn)動(dòng),且 =6時(shí), 求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題14分).已知橢圓離心率,焦點(diǎn)到橢圓上
的點(diǎn)的最短距離為。
(1)求橢圓的標(biāo)準(zhǔn)方程。
(2)設(shè)直線與橢圓交與M,N兩點(diǎn),當(dāng)時(shí),求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

.橢圓的左準(zhǔn)線為,左、右焦點(diǎn)分別為,拋物線的準(zhǔn)線也為,焦點(diǎn)為,記的一個(gè)交點(diǎn)為,則(    )
A.B.1C.2D.與,的取值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,在等邊中,O為邊的中點(diǎn),,D、E的高線上的點(diǎn),且.若以A,B為焦點(diǎn),O為中心的橢圓過(guò)點(diǎn)D,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,記橢圓為M

(1)求橢圓M的方程;
(2)過(guò)點(diǎn)E的直線與橢圓M交于不同的兩點(diǎn)P,Q,點(diǎn)P在點(diǎn)E, Q
間,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,離心率為,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

..(本小題滿分12分)
已知直線與橢圓相交于A,B兩點(diǎn),線段AB中點(diǎn)M在直線上.
(1)求橢圓的離心率;
(2)若橢圓右焦點(diǎn)關(guān)于直線l的對(duì)稱點(diǎn)在單位圓上,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓經(jīng)過(guò)點(diǎn)(),且它的左焦點(diǎn)F1將長(zhǎng)軸分成2∶1,F(xiàn)2是橢圓的右焦點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是橢圓上不同于左右頂點(diǎn)的動(dòng)點(diǎn),延長(zhǎng)F1P至Q,使Q、F2關(guān)于∠F1PF2的外角平分線l對(duì)稱,求F2Q與l的交點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知為雙曲線的右焦點(diǎn),為雙曲線右支上一點(diǎn),
且位于軸上方,為直線上一點(diǎn),為坐標(biāo)原點(diǎn),已知,
,則雙曲線的離心率為                                         
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案