已知P(x0,y0)是圓C:x2+(y-4)2=1外一點(diǎn),過(guò)P作圓C的切線,切點(diǎn)為A、B,記:四邊形PACB的面積為f(P)
(1)當(dāng)P點(diǎn)坐標(biāo)為(1,1)時(shí),求f(P)的值;
(2)當(dāng)P(x0,y0)在直線3x+4y-6=0上運(yùn)動(dòng)時(shí),求f(P)最小值;
(3)當(dāng)P(x0,y0)在圓(x+4)2+(y-1)2=4上運(yùn)動(dòng)時(shí),指出f(P)的取值范圍(可以直接寫出你的結(jié)果,不必詳細(xì)說(shuō)理);
(4)當(dāng)P(x0,y0)在橢圓
x24
+y2=1上運(yùn)動(dòng)時(shí)f(P)=5是否能成立?若能求出P點(diǎn)坐標(biāo),若不能,說(shuō)明理由.
分析:通過(guò)△PAC,△PBC是兩個(gè)全等直角三角形求出f(P)的表達(dá)式,
(1)當(dāng)P點(diǎn)坐標(biāo)為(1,1)時(shí),求出|PC|,即可求f(P)的值;
(2)當(dāng)P(x0,y0)在直線3x+4y-6=0上運(yùn)動(dòng)時(shí),利用點(diǎn)到直線的距離公式求出距離最小值,即可求f(P)最小值;
(3)當(dāng)P(x0,y0)在圓(x+4)2+(y-1)2=4上運(yùn)動(dòng)時(shí),求出|CD|,|PC|的范圍,即可指出f(P)的取值范圍;
(4)利用f(P)=5求出pc,通過(guò)聯(lián)立方程組利用判別式判斷P復(fù)數(shù)存在.
解答:解:因?yàn)椤鱌AC,△PBC是兩個(gè)全等直角三角形,
∴f(P)=2S△PAC=|PA|•|AC|=|PA|=
PC2-1
              …(3分)
(1)∵P(1,1),C(0,4),∴|PC|=
10
,∴f(P)=3             …(5分)
(2)P(x0,y0)在直線3x+4y-6=0上運(yùn)動(dòng)時(shí),|PC|的最小值為點(diǎn)C到直線3x+4y-6=0的距離d,d=2,
∴f(P)的最小值為
3
                      …(8分)
(3)P(x0,y0)在圓D:(x+4)2+(y-1)2=4上運(yùn)動(dòng)時(shí),|CD|=5,
|PC|∈[3,7],f(P)∈[2
2
,4
3
]…(11分)
(4)f(p)=5?|PC|2=26?x02+(y0-4)2=26,
x
2
0
4
+
y
2
0
=1
代入得:
3y02+8y0+6=0,△=-8<0,故滿足條件的P點(diǎn)不存在.      …(14分)
點(diǎn)評(píng):本題考查直線與圓的位置關(guān)系,點(diǎn)到直線的距離函數(shù)表達(dá)式值的范圍的求法,考查分析問(wèn)題解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

①已知P(x0,y0)是直線l:f(x,y)=0外一點(diǎn),則直線f(x,y)+f(x0,y0)=0與直線l的位置關(guān)系是
 

②設(shè)a、b、c分別是△ABC中角A、B、C的對(duì)邊,則直線:xsinA+ay+c=0與直線bx-ysinB+sinC=0的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P(x0,y0)是拋物線y2=2px(p>0)上的一點(diǎn),過(guò)P點(diǎn)的切線方程的斜率可通過(guò)如下方式求得:
在y2=2px兩邊同時(shí)對(duì)x求導(dǎo),得:2yy′=2p,則y′=
p
y
,所以過(guò)P的切線的斜率:k=
p
y0
試用上述方法求出雙曲線x2-
y2
2
=1
P(
2
,
2
)
處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•開(kāi)封一模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的上項(xiàng)點(diǎn)為B1,右、右焦點(diǎn)為F1、F2,△B1F1F2是面積為
3
的等邊三角形.
(I)求橢圓C的方程;
(II)已知P(x0,y0)是以線段F1F2為直徑的圓上一點(diǎn),且x0>0,y0>0,求過(guò)P點(diǎn)與該圓相切的直線l的方程;
(III)若直線l與橢圓交于A、B兩點(diǎn),設(shè)△AF1F2,△BF1F2的重心分別為G、H,請(qǐng)問(wèn)原點(diǎn)O在以線段GH為直徑的圓內(nèi)嗎?若在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P(x0,y0)是直線x+y-6=0上的動(dòng)點(diǎn),若圓D:(x-1)2+(y-1)2=4存在兩點(diǎn)B、C,使∠BPC=60°,則x0的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案