①已知P(x0,y0)是直線l:f(x,y)=0外一點(diǎn),則直線f(x,y)+f(x0,y0)=0與直線l的位置關(guān)系是
 
;
②設(shè)a、b、c分別是△ABC中角A、B、C的對(duì)邊,則直線:xsinA+ay+c=0與直線bx-ysinB+sinC=0的位置關(guān)系是
 
分析:①根據(jù)f(x0,y0)為常數(shù),得到兩直線方程中x與y的系數(shù)相同,常數(shù)項(xiàng)不相等,得到兩直線的位置關(guān)系是平行;
②根據(jù)正弦定理得到a,b,sinA及cosB的關(guān)系式,變形可得兩直線的斜率乘積為-1,得到兩直線的位置關(guān)系是垂直.
解答:解:①方程f(x,y)=0與f(x,y)+f(x0,y0)=0兩變量的系數(shù)完全相同,而f(x0,y0)≠0,即常數(shù)項(xiàng)不同,所以兩直線的位置關(guān)系是平行;
②由正弦定理知:
a
sinA
=
b
sinB
,變形得:
-sinA
a
b
sinB
=-1即兩直線的斜率乘積為-1,所以兩直線的位置關(guān)系是垂直.
故答案為:平行;垂直.
點(diǎn)評(píng):此題考查了兩直線平行及垂直的判斷方法,是一道中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P(x0,y0)是拋物線y2=2px(p>0)上的一點(diǎn),過(guò)P點(diǎn)的切線方程的斜率可通過(guò)如下方式求得:
在y2=2px兩邊同時(shí)對(duì)x求導(dǎo),得:2yy′=2p,則y′=
p
y
,所以過(guò)P的切線的斜率:k=
p
y0
試用上述方法求出雙曲線x2-
y2
2
=1
P(
2
,
2
)
處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P(x0,y0)是圓C:x2+(y-4)2=1外一點(diǎn),過(guò)P作圓C的切線,切點(diǎn)為A、B,記:四邊形PACB的面積為f(P)
(1)當(dāng)P點(diǎn)坐標(biāo)為(1,1)時(shí),求f(P)的值;
(2)當(dāng)P(x0,y0)在直線3x+4y-6=0上運(yùn)動(dòng)時(shí),求f(P)最小值;
(3)當(dāng)P(x0,y0)在圓(x+4)2+(y-1)2=4上運(yùn)動(dòng)時(shí),指出f(P)的取值范圍(可以直接寫出你的結(jié)果,不必詳細(xì)說(shuō)理);
(4)當(dāng)P(x0,y0)在橢圓
x24
+y2=1上運(yùn)動(dòng)時(shí)f(P)=5是否能成立?若能求出P點(diǎn)坐標(biāo),若不能,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•開封一模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的上項(xiàng)點(diǎn)為B1,右、右焦點(diǎn)為F1、F2,△B1F1F2是面積為
3
的等邊三角形.
(I)求橢圓C的方程;
(II)已知P(x0,y0)是以線段F1F2為直徑的圓上一點(diǎn),且x0>0,y0>0,求過(guò)P點(diǎn)與該圓相切的直線l的方程;
(III)若直線l與橢圓交于A、B兩點(diǎn),設(shè)△AF1F2,△BF1F2的重心分別為G、H,請(qǐng)問原點(diǎn)O在以線段GH為直徑的圓內(nèi)嗎?若在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P(x0,y0)是直線x+y-6=0上的動(dòng)點(diǎn),若圓D:(x-1)2+(y-1)2=4存在兩點(diǎn)B、C,使∠BPC=60°,則x0的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案