19.在極坐標(biāo)系中,已知兩點(diǎn)M(2,$\frac{π}{2}}$),N(${\sqrt{2}$,$\frac{7π}{4}}$),沿極軸所在直線把坐標(biāo)平面折成直二面角后,M、N兩點(diǎn)的距離為( 。
A.$\sqrt{10}$B.$\sqrt{6}$C.$\sqrt{22}$D.$\sqrt{3}$

分析 折疊后OM⊥ON,求出OM,ON,利用勾股定理計(jì)算MN.

解答 解:設(shè)極點(diǎn)為O,則OM=2,ON=$\sqrt{2}$,
∴MN=$\sqrt{O{M}^{2}+O{N}^{2}}$=$\sqrt{6}$.
故選B.

點(diǎn)評(píng) 本題考查了空間距離的計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若函數(shù)y=3cos(2x+φ)的圖象關(guān)于點(diǎn)($\frac{π}{3}$,0)中心對(duì)稱,那么|φ|的最小值為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.[$\frac{1}{4}$(0.027${\;}^{\frac{2}{3}}}$+50×0.0016${\;}^{\frac{3}{4}}}$)]${\;}^{-\frac{1}{2}}}$=$\frac{20}{7}$.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知兩個(gè)正數(shù)m,n,可按規(guī)則p=mn+m+n擴(kuò)充得到一個(gè)新數(shù)p,在m,n,p三個(gè)數(shù)中取較大的數(shù),按上述規(guī)則擴(kuò)充得到一個(gè)新數(shù),一次進(jìn)行下去,將每次擴(kuò)充一次得到一個(gè)新數(shù),稱為一次操作,若m=1,n=3,按實(shí)數(shù)規(guī)則操作三次,擴(kuò)充所得的數(shù)是255.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列函數(shù)是奇函數(shù)的是(  )
A.y=lnxB.y=x3,x∈(-1,1]C.y=x${\;}^{\frac{1}{2}}}$D.y=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β都是非零實(shí)數(shù),且滿足f(2015)=-1,則f(2016)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,(x>0)}\\{-{x}^{2}-2x,(x≤0)}\end{array}\right.$,若函數(shù)g(x)=f(x)-m恰有一個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.[0,1]B.(-∞,0)∪(1,+∞)C.(-∞,0]∪(1,+∞)D.(-∞,0)∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)函數(shù)f(x)=x3-4x+a(0<a<2)有三個(gè)零點(diǎn)x1,x2,x3,且x1<x2<x3,則下列結(jié)論正確的是( 。
A.x1>-1B.x2<0C.x3>2D.0<x2<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.要得到函數(shù)y=-sin2x的圖象,只需將函數(shù)y=cos2x的圖象( 。
A.向右平移$\frac{π}{2}$個(gè)單位B.向左平移$\frac{π}{4}$個(gè)單位
C.向左平移$\frac{π}{2}$個(gè)單位D.向右平移$\frac{π}{4}$個(gè)單位

查看答案和解析>>

同步練習(xí)冊(cè)答案