【題目】已知,對于,均有,則實數(shù)的取值范圍是(

A. B. C. D.

【答案】B

【解析】

利用條件轉(zhuǎn)化為fx)≤mx+1)+2,即fx)的圖象不高于直線ymx+1)+2的圖象,求出函數(shù)fx)=lnx+1)過點(﹣1,2)的切線方程,利用數(shù)形結(jié)合進(jìn)行求解即可.

x∈[﹣1,+∞),均有fx)﹣2≤mx+1),得x∈[﹣1,+∞),均有fx)≤mx+1)+2

fx)的圖象不高于直線ymx+1)+2的圖象,直線ymx+1)+2過定點(﹣1,2),

作出fx)的圖象,由圖象知f(﹣1)=2,

設(shè)過(﹣1,2)與fx)=lnx+1)(x>0)相切的直線的切點為(a,lna+1)),(a>0)

則函數(shù)的導(dǎo)數(shù)f′(x,即切線斜率k

則切線方程為ylna+1)xa),

yxlna+1),

∵切線過點(﹣1,2),

∴2lna+1)=﹣1+lna+1)

lna+1)=3,

a+1=e3,

ae3﹣1,

則切線斜率k

要使fx)的圖象不高于直線ymx+1)+2的圖象,

mk,

即實數(shù)m的取值范圍是[,+∞),

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知, ,,D是邊AC上的一點,將△ABC沿BD折疊,得到三棱錐A-BCD,若該三棱錐的頂點A在底面BCD的射影M在線段BC上,設(shè)BM=x,則x的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)=,若對于任意實數(shù),不等式恒成立,則實數(shù)的取值范圍是_________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)在直角坐標(biāo)系內(nèi)直接畫出的圖象;

2)寫出的單調(diào)區(qū)間,并指出單調(diào)性(不要求證明);

3)若函數(shù)有兩個不同的零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校有,,四件作品參加航模類作品比賽.已知這四件作品中恰有兩件獲獎.在結(jié)果揭曉前,甲、乙、丙、丁四位同學(xué)對這四件參賽作品的獲獎情況預(yù)測如下:

甲說:“、同時獲獎”;

乙說:“、不可能同時獲獎”;

丙說:“獲獎”;

丁說:“、至少一件獲獎”.

如果以上四位同學(xué)中有且只有二位同學(xué)的預(yù)測是正確的,則獲獎的作品是( )

A. 作品與作品 B. 作品與作品 C. 作品與作品 D. 作品與作品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某地區(qū)2012年至2018年生活垃圾無害化處理量(單位:萬噸)的折線圖.

注:年份代碼分別表示對應(yīng)年份.

1)由折線圖看出,可用線性回歸模型擬合的關(guān)系,請用相關(guān)系數(shù)線性相關(guān)較強(qiáng))加以說明;

2)建立的回歸方程(系數(shù)精確到0.01),預(yù)測2019年該區(qū)生活垃圾無害化處理量.

(參考數(shù)據(jù)),,,.

(參考公式)相關(guān)系數(shù),在回歸方程中斜率和截距的最小二乘估計公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“節(jié)能減排,綠色生態(tài)”為當(dāng)今世界各國所倡導(dǎo),某公司在科研部門的鼎力支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該公 司每月的處理量(噸)至少為50噸,至多為220噸.月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系式近似表示為:,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為120元.

(1)該公司每月處理量為多少噸時,才能使每噸的平均處理成本最低?

(2)每月處理量為多少噸時,月獲利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,,且,

1)求證:;

2)在線段上,是否存在一點,使得二面角的大小為45°,如果存在,求與平面所成角的正弦值,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線)與橢圓相交所得的弦長為

)求拋物線的標(biāo)準(zhǔn)方程;

)設(shè),上異于原點的兩個不同點,直線的傾斜角分別為,當(dāng),變化且為定值)時,證明:直線恒過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案