【題目】已知曲線(xiàn).直線(xiàn)(為參數(shù)),點(diǎn)的坐標(biāo)為.
(1)寫(xiě)出曲線(xiàn)的參數(shù)方程,直線(xiàn)的普通方程;
(2)若直線(xiàn)與曲線(xiàn)相交于、兩點(diǎn),求的值.
【答案】(1)(為參數(shù));;(2).
【解析】
(1)由橢圓的參數(shù)方程的求法及橢圓的方程可得的參數(shù)方程,消去參數(shù)即可得直線(xiàn)的普通方程;
(2)法一:將直線(xiàn)的參數(shù)方程代入橢圓的普通方程可得關(guān)于的一元二次方程,利用韋達(dá)定理求出和,由可得,的符合相同,進(jìn)而得出,即可求出結(jié)果;
法二:將直線(xiàn)的普通方程與橢圓的普通方程聯(lián)立求出交點(diǎn)的坐標(biāo),進(jìn)而利用兩點(diǎn)間的距離公式求出和,進(jìn)而求得的值.
解:(1)曲線(xiàn),其參數(shù)方程為(為參數(shù)).
直線(xiàn)(為參數(shù)),消去參數(shù)得:,
故直線(xiàn)的普通方程為:.
(2)法一:將直線(xiàn)的標(biāo)準(zhǔn)的參數(shù)方程代入橢圓中,
得:,
整理得:,
,,可得,同號(hào),
所以.
法二:聯(lián)立直線(xiàn)與橢圓的方程:,
整理得,即,
解得:,,
代入直線(xiàn)的方程可得,,
∴不妨設(shè),,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x22(a+2)x+a2,g(x)=x2+2(a2)xa2+8.設(shè)H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的較大值,min{p,q}表示p,q中的較小值).記H1(x)的最小值為A,H2(x)的最大值為B,則AB=( )
A.a22a16B.a2+2a16
C.16D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】武漢某商場(chǎng)為促進(jìn)市民消費(fèi),準(zhǔn)備每周隨機(jī)的從十個(gè)熱門(mén)品牌中抽取一個(gè)品牌送消費(fèi)券,并且某個(gè)品牌被抽中后不再參與后面的抽獎(jiǎng),沒(méi)有抽中的品牌則繼續(xù)參加下周抽獎(jiǎng),假設(shè)每次抽取時(shí)各品牌被抽到的可能性相同,每次抽取也相互獨(dú)立.
(1)求某品牌到第三次才被抽到的概率;
(2)為了使更多品牌參加活動(dòng),商場(chǎng)做出調(diào)整,從第一周抽取后開(kāi)始每周會(huì)有一個(gè)新的品牌補(bǔ)充進(jìn)抽取隊(duì)伍,品牌A從第一周就開(kāi)始參加抽獎(jiǎng),商場(chǎng)準(zhǔn)備開(kāi)展半年(按26周計(jì)算)的抽獎(jiǎng)活動(dòng),記品牌A參與抽獎(jiǎng)的次數(shù)為X,試求X的數(shù)學(xué)期望(精確到0.01).
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若對(duì)于任意實(shí)數(shù),當(dāng)時(shí),函數(shù)的最大值為,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角系中,點(diǎn)A為曲線(xiàn)C:在第一象限的圖象上的動(dòng)點(diǎn),點(diǎn)E,G在曲線(xiàn)C的準(zhǔn)線(xiàn)上,且點(diǎn)G在x軸的下方,圓O與準(zhǔn)線(xiàn)相切,直線(xiàn)交曲線(xiàn)C于點(diǎn)B,交圓O于點(diǎn)D,H.
(1)當(dāng)點(diǎn)H為曲線(xiàn)C的焦點(diǎn),時(shí),求;
(2)當(dāng)點(diǎn)O為的內(nèi)心時(shí),若,求點(diǎn)A的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的內(nèi)角,,的對(duì)邊分別為,,,.設(shè)為線(xiàn)段上一點(diǎn),,有下列條件:
①;②;③.
請(qǐng)從以上三個(gè)條件中任選兩個(gè),求的大小和的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),過(guò)點(diǎn)作拋物線(xiàn)的兩切線(xiàn),切點(diǎn)為.
(1)求兩切點(diǎn)所在的直線(xiàn)方程;
(2)橢圓,離心率為,(1)中直線(xiàn)AB與橢圓交于點(diǎn)P,Q,直線(xiàn)的斜率分別為,,,若,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),函數(shù).
(Ⅰ)判斷函數(shù)的單調(diào)性;
(Ⅱ)若時(shí),對(duì)任意,不等式恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】斐波那契數(shù)列滿(mǎn)足: .若將數(shù)列的每一項(xiàng)按照下圖方法放進(jìn)格子里,每一小格子的邊長(zhǎng)為1,記前項(xiàng)所占的格子的面積之和為,每段螺旋線(xiàn)與其所在的正方形所圍成的扇形面積為,則下列結(jié)論錯(cuò)誤的是( )
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com