如果函數(shù)f(x)滿(mǎn)足:對(duì)任意的實(shí)數(shù)x,y都有f(x+y)=f(x)•f(y)且f(1)=2,則
f(2)
f(1)
+
f(4)
f(2)
+
f(6)
f(3)
+
f(8)
f(4)
+…+
f(20)
f(10)
=______.
由f(x+y)=f(x)•f(y)得f(2x)=f(x)2
f(2x)
f(x)
=f(x).
∵f(x+y)=f(x)•f(y)⇒f(x+1)=f(x)•f(2)=2f(x)⇒
f(x+1)
f(x)
=2,
所以數(shù)列{f(n)}是以2為首項(xiàng),2為公比的等比數(shù)列,故f(n)=2×2n-1=2n
f(2n)
f(n)
=f(n)=2n
f(2)
f(1)
+
f(4)
f(2)
+
f(6)
f(3)
+
f(8)
f(4)
+…+
f(20)
f(10)
=21+22+23+…+210=
2(1-210)
1-2
=211-2=2046.
故答案為:2046.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),并在區(qū)間(-∞,0)內(nèi)單調(diào)遞增,f(2a2+a+1)<f(3a2-2a+1).求a的取值范圍,并在該范圍內(nèi)求函數(shù)y=()的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)f(x)=
x2-6x+6,x≥0
3x+4,x<0
,若互不相等的實(shí)數(shù)x1,x2,x3滿(mǎn)足f(x1)=f(x2)=f(x3),則x1+x2+x3的取值范圍是( 。
A.(
11
3
,6
]
B.(
20
3
,
26
3
C.(
20
3
,
26
3
]
D.(
11
3
,6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知奇函數(shù)f(x)對(duì)任意x,y∈R,總有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)<0,f(1)=-
2
3

(1)求證:f(x)是R上的減函數(shù).
(2)求f(x)在[-3,3]上的最大值和最小值.
(3)若f(x)+f(x-3)≤-2,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=|x-1|-|x+2|.
(1)用分段函數(shù)的形式表示該函數(shù);
(2)在右邊所給的坐標(biāo)第中畫(huà)出該函數(shù)的圖象;
(3)寫(xiě)出該函數(shù)的定義域、值域、奇偶性、單調(diào)區(qū)間(不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=
2x-x2(0<x≤3)
x2+6x(-2<x≤0)
-
4x
x+1
(-∞<x≤-2)

(1)作出f(x)的圖象;
(2)求f(x)的值域;
(3)求f(x)<0時(shí)的x取值集合;
(4)討論方程f(x)=b解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)f(x)=
2x,x∈(-∞,2)
log2x,x∈(2,+∞)
,則滿(mǎn)足f(x)=4的x的值是( 。
A.2B.16C.2或16D.-2或16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線軸的兩個(gè)交點(diǎn)的橫坐標(biāo)分別為1和3,則不等式的解集是                    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)的單調(diào)遞減區(qū)間為                   

查看答案和解析>>

同步練習(xí)冊(cè)答案