10.已知點A(1+a,2a),B(1-a,3),直線AB的傾斜角為90°,則a=0.

分析 由直線的傾斜角是90°,得到A、B的橫坐標相同,從而求出a的值即可.

解答 解:若直線AB的傾斜角為90°,
則1+a=1-a,解得:a=0,
故答案為:0.

點評 本題考查了直線的傾斜角問題,考查垂直于x軸的直線上點的特點,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知cosα=$\frac{1}{3}$,α∈(0,π),則cos($\frac{3}{2}$π+2α)等于(  )
A.$-\frac{{4\sqrt{2}}}{9}$B.$-\frac{7}{9}$C.$\frac{4\sqrt{2}}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.遞減等差數(shù)列{an}的前n項和Sn滿足S5=S10,則滿足Sn>0成立的最大的正整數(shù)n的值為14.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x}-1,x≤0}\\{-{x}^{2}+x,x>0}\end{array}\right.$則關于x的不等式f(f(x))≤3的解集為(-∞,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知不等式組$\left\{\begin{array}{l}x+y+2≤0\\ x-y+4≥0\\ y≥a\end{array}\right.$,若z=2x-y的最大值為-1,則a值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.當x≥3時,不等式$x+\frac{1}{x-1}≥a$恒成立,則實數(shù)a的取值范圍$({-∞,\frac{7}{2}}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{ln({x+1})({x>0})}\\{\frac{1}{2}x+1({x≤0})}\end{array}}\right.$,如果存在實數(shù)s,t,其中s<t,使得f(s)=f(t),則t-s的取值范圍是(  )
A.[3-2ln2,2)B.[3-2ln2,e-1]C.[e-1,2]D.[0,e+1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)$f(x)=sin(ωx-\frac{π}{3})(ω>0)$,若函數(shù)f(x)在區(qū)間$(π,\frac{3π}{2})$上為單調(diào)遞減函數(shù),則實數(shù)ω的取值范圍是(  )
A.$[\frac{2}{3},\frac{11}{9}]$B.$[\frac{5}{6},\frac{11}{9}]$C.$[\frac{2}{3},\frac{3}{4}]$D.$[\frac{2}{3},\frac{5}{6}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)$f(x)=\left\{\begin{array}{l}x+\frac{2}{e},x<0\\ \frac{x}{e^x},x≥0\end{array}\right.$,若f(x1)=f(x2)=f(x3)(x1<x2<x3),則$\frac{{f({x_2})}}{x_1}$的取值范圍為(-1,0).

查看答案和解析>>

同步練習冊答案